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The work, Helicopters: (Calculation and
Design) is published in the three followlng
books.

Book One — Aerodynamics;
Book Two — Vibrations and dynamic stabllity;
Book Three - Design,

In this second bonk there are discussed
certaln questions of the theory of vibrations and
methods of calculation of stresses appearing
during these vibrations in the construction of a
helicopter in flight and, in particular, in the
blade of the main rotor.

Methods are given of the calculation of the
structural service 1life and there are alcr metheds
of calculating vibrations of the helicopter, which
allow the determination of the amplitude of these
vitrations and the comparison of them with comfort
norms. For the first time in Soviet literature
there iz examined the problem of combined vibra-
tions of the rotor and fuselage.

The theory of self-excited osclllations of
special type, bearing the name "ground resonance,"
1s discussed in detail. Pecullarities of the
appearance of such oscillations of the helicopter
on land, durling takeoff and landing and under
flight conditlions are examined.

In a separate chapter there are examined
speclal cases (touched upon little in general
literature) of the calculation of bearings oper-
ating in specific conditions of osclllatory
motion. Here there 1s also discussed the theory
and method of calculation of a new type of thrust
bearing of increased load capacity and also
bearings absorbing combined loads.

The book 18 intended for engineers of design
offices, scientists, graduate students and
instructors of higher edicational institutions.
It can also be useful to engineers of helicopter
manufacturers and students who are engaged 1in
thorough study of vibrations and dynamic
stabllity of helicopters. Certain sections of
the book will alsc be useful to the flying and
technical personncl of helicopter flight units.

The book contains 35 tables, 246 illustra-
tions, and 47 references.
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PREFACE v

The first bcok of the work, Helicopters, (Calculation and
Design), published in 1966, was devoted to aerodynamics: theory
and methods of calculation of aerodynamic properties of the main
rotor and aerodynamic design of helicopters of different configurations L
on the whole.

In the first book there is included an account of the theory of
flutter of the main rotor, which:-is usually attributed to

aeroelasticity — the region bordering between aerodynamics and
stability.

The second book is a logical continuation of the first and d2als
with vibratiens and dynamic stability of helicopters.

Questions of static stability of helicopters in principle do
not contain anything new as compared to that known in aircraft
manufacturing. Regarding vibrations and dynamic stabllity,
helicopters have a number of pecullarities which were designated
from the first steps of hellcopters as a new type of zircraft. These
pecuiiarities acqulred great acuipy in the process, if 1t can be so
expressed, of the "fight for existence" of these apparatuses in the

general system of airportless aviation transport means.

An account of problems of vibrations and dynamic stability of '
the helicopter starts with a description of methods of calculation of (”"} :
elastic vibrations of the blade of 1ts main rotor, whleh are close -
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in fundamental equations and methods of solution to that utilized in
the theory of flutter but have different directivity, since in the
final analysis it leads mainly to the sgclution of strictly a

stabllity problem — to the determination of varying stresses effective
in the blade, and then with the use of data on fatigue limit of
concrete construction, to the determination of the service life, i.e.,
cservice life of the blade.

Problems of vibrations in dynamic stabillty are impcoriant not
only from the point of view of reliability of the apnaratuses;
and the solution to these problems governs the service life of the
machines, and this means their economy.

In the book, in particular, there are examined contempcrary
methods of calculation of elastic vibrations of the blade cairied
out on high-speed computers, which makes it possible to deterrine
the varying stresses acting in the blade.

Investigations of vibraticns of the "ground resonance” type,
Just as the study of construction vibrations sirictly comprise the
raln subject of the theory oi vibratlions of the hellconter,

The elimination of vibrations of the "ground resonance" type,
leading 1In the case of thelr appearance and davelopment tc the.
destruction of the apparatus on land and in multirotor configzurations
in air, was always one of the main problems éonfrcnting designers.
~"he question of oscillations fvibrations) of parts cf helicorter
is very important, which 1s examined from the point of view of
somfort for the crew and passengers. It 1s ecasy to estimate the
acuteneds cf this problem i{f one were to imagine the power of the
vibrations' constant source - a huge main rotor ornerating in a
girecatly altepnating velocity fleld.

The last éhapter of the baook !5 devoted to the cxiculation of

speclal bearings necessary in the designing of many unils ¢f the
helicopter and thus ‘s the transiticn to the third bcc< ~ Desipn.
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In the boeok Design there will be briefly examined basic questions
of the layout of the hellicopter selectlon of basic parameters of
helicopters, including having wings, and alsc auxiliary prooulsive
systems — tractor propellers or additional jet engines. There will
be also discussed considerations about the economy of aviation
materiel, which must be consldered in designing.

Examined in this book will also be questions of balaneling,
controllabXlity and stability from the point of view of selection
of parameters of the control system, and also questions of designing
of separate units cf the helicopter.

The second book Vibrations and Dynamic Stabllity was written
by the following: Introduction — M, L. Mil'; Chapter I -
A. V. Nekrasov; Chapters II and III — L. N. Grodko; Chapter IV —
Y. A. Leykand. § 11 of Chapter I was written by A. V. !lexrasov
jointly with englneer Z. Ye. Shnurov.

In preparation of the manuscript the author: received much hein
from engineers ®P. L. Zarzhevskaya, V. M. Kostrorin and I. V. ¥urov.

In the book there are results of calculations, carricd out
hy engineers Yu. A. Myagkov, 0. P. Bakhov, V. F. Yhvozstov,
... A. Golubtsov, V. M, Pchelkin, 3. Ye. Cno, V. 4. Panhkin,
?, Shevnyakova, N. M. Kiseleva, L. V. Artamonova, V. V. erira,
N. A. Matskevich, V. I. Kiryushkinoy and i. G. Urlova.

Many valuable instructions were made by critic H. A. Vlkheyev,

¥4inal preparation of thc manuscript for publication waz maile Ly
engineer L. 3. Pudnitskly.

Ay

The authors express sincere gratitude to al: these colieaguns.
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INTRODUCTION

As soon as there was created a sufflciently powerful and light
alrcraft engine and the helicopter flew for the first time, there
appeared the first problems related to balancing, controllaéility
and stability of thils machine. These were baslically aerodynamic
problems. If one were to consider as the beginning of flights on
rotorcraft the first flights of gyroplanes Cierva during 1925-26,
then it is possible to say that the given problem was baéidally
solved already in first decade (1920-1936) of their development. The
type of aircraft was thus cured of "children's diseases."

However, as soon as there appeared the first series of machines
and practical exploitatlion of them began, more serious defliclencies
of helicopters, such as, for example, fatigue connected with

insufficient dynamlc stabllity of certain elements of the construction
were discovered.

With wlder practical application of autogiros and especiaily
helicopgnrs, which were reactivated at the end of the 1930's and
beginniﬁg of the 1940's in a new improved technical baslis, there
appeareé new dynamic problems. These include, in the first place,
oscillations and -ribrations of separate‘elements of construction
or hellcopter as a whole, which are dangerous 1in conditions of
appearing stresses or impermissible from the point of view of the
creation of necessary comfort for the crew and pacsengers, and also
the problem of service life, which 1s the period of secrvice of

§ elements of counstruction, operaiing under uigh varying stresses. The
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last of the problems — increase in service life — takes on even

greater importance at present, since the depreciation and overhauil
periodsvof service of the helicopter, determined by the service life (:
of its units, influence the economics of 1its application as a means of
transport. The service life in turn is determined mainly by the

level of varying stresses effective in the structure, and therefore

the accuracy with which they are.calculatéd comprises one of the

basic problems of 1nvestigation of dynamic stability of helicopters.

' The tractor orcpeller of an alrcraft operates practically in
axial flow and just as the engine ddes not create in the elements of
structure any»noticéable varying‘stresses. Only takeoff, landing
and flight under conditions of atmospheric turbulence (and on a
combat aircraft, the maneuver) create 1n the structure of the aircraft
considerable dynamic loads:but with a relatively small (of the order )
of tens and hundreds of thousands of cycles) number of loading during
the period of service of the alrcraft. In this case it is possible
to indlcate recurring static loads.

There is quite another character of the load in a heliconter. 1Its
basic force elements are loaded dynamically, and the number of
loads frequently exceeds tens of millions of cycles during the
service period. This is explained first of all by the asymmetric
flow of: the maln rotor, which rotates and simultaneously mdveq forward.
The blade undergoes variable aerodynamic loads due to the change in
relativé flow rate and angles of attack of its sections. All forces
and moments having effect on the blade are transmitted to the hub
and control system by the main rotor. The forces and moments arriving
Trom va}ious blades are balanced mutually with the excention of
loads effective at frequencies whose ratic to the number of
revolutions of the rotor is a multiple to the number of blades. These
loads a}e transmitted to the fuselage and irrotational parts of
the con%rol system by the rotor and create in them also very
noticeable varying stresses.

Thius the problem of vibrations and dynamic stability in helicoptef
construction is not only considerably more extensive than in aircraft {

B
N
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construction, but in a whole number of cases it does not hdve a
direct analogy in aircraft construction.

Understanding of the importance of problems of dynamic stability
was not achieved at once. Thus even causes of first accidents of
autogiros in 1936-37 during which autogiros flipped in air f~» a
long time were attempted to be explained by insufficient dynamic
stability. In connection with this, in particular, there were
undertaken investigations of the dynamics of the main rotor with
hinged attachment of blades with curvilinear motion of the apparatus
{see § 2 of Chapter II, Book One). This theory subsequently found
wide application during the during the development of prcblems of
dynamic stabllity and controllability of helicopters. However, it
did not uncover the real cause of the m2ntioned accidents. As it
became apparent later, the cause of them was insufficient dynamic
stability of the main rotor blades.

PRSI LR TR0 TR PORP R A= ATV R TR IRE - LW OO

These prcblems are percelved llterally by groping. The first
experimental autogiros and helicopters had small dimensions and, as
a reéult, quite high rigidity cf construction. Iliowever, the first
increase In dimensions immedlately encountered great difficultiles.
Thus on the autogiro A-4, having a diameter of a little larger than
its predecessor, autogiro 2EA, sericys difficulties because of
insufficient blade torsional rigidity appeared. Angle of incidence
of blades in the first flight was Iincreased so much because of
twisting st  in that autorotation was impossible, and the flight
nearly ended in an accident,

Investigation of this phenomenon was completed by publication
of a work on the dynamic blade twisting of a rotor in flight (see
[2]) in which for the flrst time recommendations of the necessity
of combining the center of gravity and center of oressure were given
and considerations of the influence of the blade profiie on static
stability and controllability of the apparatus were examined. This
investigatlion led to the fact that in the practice of lcviet
helicopter construction there were accepted curved profiles, which
provide a greater reserve of autorotatién. In the layout of the blade

FTD-MT-24-103-68 xvii




v—— e a

a set of different profiles was used. The recommendations made in
the mentioned work were so sufficient that the first Soviet
helicopters, which had a diameter of the rctor of about 14 m, did
not experience flutter.

Development of Soviet hellcopter construction 1s characterized
by greater strides than that of foreign (thls permitted cur designers,
who started to construct helicopters later, to develop machines
considerably exceeding those of contemporary foreign in load
capacity and dimensions). Whereas after the first successful
helicopter, Sikorsky S-51, with a rotor diameter of 14 m, built in
1947, the Americans 1in 1950-51 proceeded to work on a machine with 2
diameter of 15.5 m (S-55), after creation of the Qﬁgdcopter Mi~1 with
a li4-meter rotor in 1952 we built the helicopters Mi-U and Yak-24
with rotors 21 m in diameter. It is not surprising that with such a
jump 1n dimensions there was revealed a new phenomenon not
encountered earlier — on both machines wlth the first flight
flutter of {he rotor began. We coped with this problem practically
very r#pidly, but problems of the theory of flutter for a long time
still awalted their solution.

For the first time we enccuntered this new phenomenon when in
April 1952 the helicopter Mi-4 was ready for the first flight. After
the beginning of acceleration the blade started arbitrarily to flao,
sagging greater and greater and threatening to touch the structure.
The testers knew that they were dealing with a new phenomenon which
no one had observed before. This was the flutter of the rotor
blades. No one knew then that this was the very rotor flutter in
whose investigation many sclentists in the USSR and abroad were
engaged.  According to all data existing at that tlme, flutter
was not expected, since 1t could not appear at the numoer of

rotor revolutions of 100-110 per minute, as occurred on the hellcopter

Mi-U in reallty, but approximately at 500 revolutions. Declslve
for the appearance of flutter was In this case the fact that preat
forces developed on a rotor of such a diameter caused conslderable
deformation of the cyclic nitch control, which 1s equivalent to the
lowering of twisting rigidity of the blades, and alsc the fact that
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‘flutter this factor was not taken into consideration., As a result
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: M_Wv,wwﬁxl
1

then for these machines a large value of the coefficient of flap
control (close to unity) was selected; in early investigations of

it was not a question on the helicopter flights, since flutter
started considerably earlier than the working number of rotor
revolutions were attained.

With observation of the pattern of flutter (flapping, bend and
torsion of blades) it became clear that this phenomenon could be
eliminated only by using torques from inertial forces appearing
in the process of the moving blade sections with its flapping.

Not assoclating rotor flutter with the flutter of wings, where, as
has long since been known, the main importance is the mutual location
of the center of gravity, axils of rigidity and center of pressure,
but simply by establishing the counterwelghts at several points E
along the length of the blade, which during vibrations should have :
created inertial moments of opposite sign, we repeated starting

of the rotor and understood that in cur hands there 1s reliable

means to stop the flutter.

Thus 1in alshort time the given problem was solved practically,

and in May of 1952 the first flights of.the helicopter Mi-U were
accompllished.

At the same time flutter appeared on the helicopter Yak-24,
which had the very same hub and cycllic pitch control mechanism as
those on the helicopter Mi-4, but the blade was of quite di~fereant
design (with greater flexural and twisting rigidity). However,
due to the fact that with the appearance of flutter there is decisive
importance in the rigidity of the cycilec pltch control and parameters
of the flap control, on blades of the helicopter Yak-24 flutter

appeared of the very same form and at the same revolutions as that
on helicopter Mi-4,

Thus durlng several weeks there was found practical solution

i'or elimination of flutter which was used up till now. llowever,
the scientific theory which would permit obtalning an anower whether
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flutter will appear or not, and even if 1t appears, then at what

numbers of revolutions and what form, was created by us during the
rubsequent four years. '

It is necessary to say that the moust complex was included in
the fact that, having finished with flucter observed on earth (with
the he_p of displacement of centering of the blade forward it was
possible to "drive" it outside the limits of the working numbers of
revolutions and even above the maximum permissible number of engine
revolutions on earth), nevertheless there was not excluded the
possibility of its appearance in flight. This led to unpleasant
consequences. In January of 1953 a helicopter Mi-4 had a flight
accldent whose causes for almost three years were not sufficiently
and convincingly explained. During investigation traces of the
impact of blades against the cockpit were revealed. Thils was not
observed in any other cases. It 1s necessary to note that with
normal flapping motion the blade cannot touch the cabln, since for
this it 1s necessary that in air the lower limiters of overhang of it
were brought down.

It is possible to imagine how energetically we had to continue
tc look for the cause of this event, if one were to remember that
after 1t there were stopped neither the flights nor the serlal
production of these machines.

During 1954 many pilots observed in flight an unusual nhenomenon,
which received the name "Kalibernyy effect™ (surname of the pilot
who first noticed it). Kalibernyy determined that in conditions of
motor reduction, approximately at an angle of setting of the blades
of 6°-7f, the blacdes begin to flap away from the cone of rotation
described by them. After a regrouping of the blades having a
somewhat different transverse centering this phenomenon was ceased.
Rut once, after two years during a checking in Tliyht of 4 cet of
b lades for the absence of the Kallbernyy effect, {.20., with
fulfiliment in flipght of motor reduction with the nitelh argrle of
6-7°,' this phenomenon appeared in such a degree where the janpiny
of the blades were so strong that in the machine forced laraing
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was accomplished with difficulty. It is necessary to ncte that

near land with transition to other conditions the flaiping of the
blades ceased, and the machine behaved normally. Wi“h inspection

of the helicopter after the flight there were revealed broken

fixings of the blades (they are thus called the movable connections
on the slit trailing edge of the blade) which indicated bending of
the blade in the plane of rotation. Everything remaining was in good
working order. It was decided to investigate in detail this
helicopter with the same set of blades. Flight tests were conducted
in crder to repeat this phenomenon and study 1it.

Measurements of the blades showed that their centering appeared
to be approximately 1% of the chord inore to the rear than it was
when the blades were manufactured at the plant. And this is
explicable, as the blades were covered with plywood. The center of
gravity of the plywood is approrinately on half of the chord.
Therefore, with swelling and loading of it from moisture, the center
of gravity of whole blade is displaced to its trailing edge. The
case with this helicopter occurred during a thaw when the humidity of
the air was high. '

During these tests it was also finally established that the
character of the flappinrg motion of blades and motion of the
control stick in flight on conditions of "Kalibernyy effec:" are
absclutely analogous to the flapping motion and motion of the stick,
which wFre recorded on land durlng tests when the hlades were
subjected to flutter by means of artificlally cr«:.ted rear centering.
This complex means permitted setting that phenomencn arpearing
in flight identical with that which was noted on land. Thus it was
established that the "Kalibernyy effect" is nothing else but the
beginning of flutter in flight. On the basis of this conclusion and
it was Eonjecturcd that the unexplained earlier flipht accident with
blows of blades against the cockpit was also nothing clse htut the
flutter of blades in flight appearing at revolutions of the rotor,
at which on land it did not appear.
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With flutter vibrations of a hinged sealed blade, in contrast
to vibrations of a wing of an ailrcraft are similar to a flapping
motion whose amplitude increases until the blade hits against the
limiters of overhang and then knocking them against cabin.

The fact that this phenomenon was not discovered for a long
time is explained by the erroneous assumption resulting from model

testing that if flutter on land i1s eliminated then in air with forward

motion it is not able tc appear. But practice and then a more
strictly set experiment on the helicopter, and, finally, theory
showed that there are conditions of flight at which flutter during
rotor revolutions can occur in flight although it does not appear
on land.

It 18 necessary to say that as was established in the course
of investigations, the phenomenon of flutter appeared on helicooters
earlier. Even in 1949 on the helicopter Mi-1 to increase the stall
reserve there was designed and bullt a main rotor with wider blades.
This rotor in flight caused shaking which was never possible to
climinate. When there was developed the theory of flutter and all
peculiarities of this phenomenon were explained, it became possihle
not only to explain the cause of shaking on the Mi-1l helicopter with
wide blades, induced by proximity of conditions to flutter, but
also without a single difficulty to design and construct even in
1956 a 35-meter rotor for helicopters Mi-6 and Mi-10. Per“ection of
this rotor 1s confirmed by the fact that in a week after first
flight the new heavy helicopter Mi-6 could accomplish flight for
training for participation in an air show on an aviation holiday in
Tushino. There was no longer any unpleasant phenomena connected
with flutter on these machines neither then nor lat.r. uch iz the
history.of the problem of flutter.

No less important is the problem of the determination of varving
stresses in blades, which 1s solved by means of connideration of
their forced vibrations.
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During the first decade of their development main rotors of
helicopters were designed actually without preliminary calculation
of varying stresses which appear in flight. At that time this
calculation was laborious and inaccurate, and not infrequently it
was finished only after the roll out of the machine onto the airfield.
Only the development of methods of calculation of varying stresses
allowing the use of high-speed digital computers permitted the
' designing of blades with a consclous selection of the distribution

| of their rigidities and masses in such a way so as to avoid dangerous
resonances, to lower the level of stresses and to provide long
service 1ife and reliability of the blades.

T <

! It 1s necessary to note that a refinement of the method of
design of the blade for stability caused further deepening and
refinement of the aerodynamic theory. As was already shown in the

NN

first book, refinement of calculation of flying data did not create

a great necessity in the development of a complex and laborious (for
calculations) vortex theory of the main rotor. However, only the
vortex theory permits determining the irregularity of the field of
induced velocities causing variable loads on the blade with
frequencles exciting flexural vibrations of the blades at the second,
third and higher tones. Therefore, only the vortex theory can give
in the calculation of stresses results close to those which are
observed in reality.

Another no less important problem was vibrations. This
problem was always one of the most difficult in the development of
rotorcraft. Dozens of constructions in the !ISSP and abroad,
intereﬁting in design and flyirg-tactical data, did nct appear because
of the high level of vibrations.

OW aircraft there are not such powerful sources of excitation
of vibrations as there are on hellcopters. Furthermcre, the engines
and propellers, which are on aircraft the basic exciters of vibrations,
can be sufficliently well insolated from the structure with the help
of speclal shock absorption. Resonances with high fronuencies {rom
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these exciters enough can be easily eliminated by means of
comparatively small changes ir. design. On the helicopter, besides
the fact that the actual disturbing forces from rotors are
considerably greater than those on aircraft, their frequencies from
the slowly revolving rotor are rather low and at colncidernce with
natural frequencies of vibrations of the fuselage, engine, wing

or empennage there appear resonances, which lead to considerable
vibrations with amplitude movements attaining on the steady-state
operations of flight quantities of the order of 0.3-0.4 mm and on
short-term conditions before landing of tne helicopter, even 1-2 mm
in the crew's cabin.

To build up resonances with fundamental tones of natural
oscillations of the fuselage by the change in rigidity of design on
the constructed machine frequently appears practically impossible,
since this is equivalent to total alteration of the fuselage.
Therefore, it 1s important to be able correctly to estimate the
frequencies of natural oscillations of the fuselage and to calculate
the amplitude of vibrations in the process of designing of the
machine.

The basic attention in combatting vibrations 1s given to the
lowering of velues of variable forces arriving on the fuselage from
the rotor. These forces are caused by vibrations of the blades. 1In
turn vibrations of the blades can be larger or smaller dependlng uron
the proximity of their natural frequencles of sourc?s of external
excitation.

In all cases the proximity to resonance causes an increase in
stresses in the blades. But if these oscillations occur with a
harmonic frequency of Zy + 1 or L 1 for oscillations in the nlane
of rotation of the rotor or harmonic frequency 2, for oscilliations in
the plane of the stroke (where zy i{s the numdber of bLlades), then the
for:es are added and transaitted through hinges to the hul: and

through it to the fuselage, thus causing its osrillatlons.
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The most unpleasant vertical vibrations for a perscn to a
considerable degree are caused by forces effective in the plane of
rotation of the rotor, since these forces, being applied high above
the center of gravity of the helicopter, create considerable moments
exciting oscillations of the fuselage bend. It is natural that the
greatest amplitudes of vibrations (antinode) are reached on the ends
of fuselage and, consequently, also in the cockpit.

it appears that with cetermination of frequencies of natural
oscillations of blades of the helicopter it 1s necessary to consider
the fact that the rotor hub during vibrations doee not remain
fixed, since 1t is fastened on an elastic fuselage. Thus with
determination of vibrations the helicopter should be examined as a
zingle dynamic system with elastic blades hinged suspended to the
hub, which 1is fastened to the elastic fuselage.

It 1s obvious that such a calculation scheme could appear and
re feasible for consideration only recently. 2As far as we know, this
bhook gives for the first time an account of the method of calculation
of vibrations of a helicopter during its designing.

Further in the book self-excited oscillations of a helicopter,

are examined, which usually bear the name "ground resonance.”
]

For the first time designers encountered the phenomenon of
rround resonpqce more than 30 years ago when on one of the first
Soviet autogiros A-6 (design of V. A. Kuznetsov) there were used
wheels with low-pressure tires appearing at that time. Ultrutcn
taving alr-cll shock abscrption were removed from the hellcopter,
w¥i'h the first starting unexpected oscillations appeared. The
»ellcopter rocked from wheel to wheel with ever increaslng amulitudes
until 1t started to jump, detaching the wheels from land. Takeoffl
was completed with a crash.

Gwing te the fact that these tests were photoeranhed by a movie
camera it was possible to establish that the blades accomplished
srowing czciliatluns arcund the vertical hirpes. These csclillations,
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occurring in the field of centrifugal forces, caused the periodic
displacement of the center of gravity of the whole 1ift system
relative to the center of the hub and thus excited oscillations of
the hellcopter standing on land. It 1s clear that if the frequency
of-displacements of the center of gravity of the rotor colncides
wlth the frequency of natural oscillations of the helicopter on
pneumatic tires, then such oscillations can grow. Here one would

think that the physical plcture of the phenomenon is clear. The

eneréy which supplied these growing oscillations was either the
energy of the engine rotatlng the rotor or when the engine is included,
the kinetlce energy:of the rotating rotor.

AHowevér, for development of the theory of ground resonance and
study of its new ménifésﬁations, pdssiblj;in»new fdndamentally
different plans and designs of hélicopters; numerous investigations
were required, which continue even now.

-The first theoretical works clearing up the nature of natufal
oscillations of the "Bround resonance" type were carried out in 1936
by I. P. Bratukhin and B. Ya. Zherebtsov. Results of investigations
conducted by them permitted the elimination, in particular, of ground
resonance on the largest autoglro ever built in the world..the A-15,
with a rotor with a diameter of 18 m, created in 1936 by the design
of V. A. Kuznetsov and M. L. Mil'. 1In the construaction of the
hub of this autogiro there were used springs bullt into the limiters
of blade vibrations around the vertical hinge. The springs change
the natPral frequency of oscilllations of the blades in the pl@ne of

rotation, and thus ground resonance was eliminated.

There are no doubts in the fact that the phenomenon of ground
resonance was at that time well-known and somehow studied in the
West, inasmuch as already the first successful autogiros of Cierva,
for example, the S~19, had elastic couplings (shock absorbers)
included in the blades through frictlional dampers.

However, many desizners during a certaln time period contiqued
to c¢reate autoglros without dampers in vertical hinges. A cample of
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such a machine was the autogiro A-7, created in 1937 by N. I.»kéhb%.
He successfully flew it without having dampers on the rotor hub; The
secret of successtul flights consisted in the fact tbat'this was the
first machine with a tricycle landing gear providing vractically
vertical location of the axis of the main rotor‘during acceleratioﬁ of
1t before takeoff and wiih the stop after landing. This circumstancé

conditioned the small magnitudes of initlal disturbance due to deviation

of blades 1n the plane of rotation, lnasmuch as the initial deviations
of the blades are causec by the prcjectlon of gravity on the plane
of rotation. On the other hand, frictlonal forces 1ln the hinges were

also important (at that time in the hinges there were bronze bushings),
which with considerable centrifugal forces cannot be disregarded; they

gave in thils case sufficiently great damping. However, once pllot
S. A. Korzinshchikov after one of the flights immedlately after
landing did not push the -~ontrol stick forward and thereby did not
move the machine from a three-point position (skid and baslc landing
gear) to a standing position (wilth support on the front leg), as
ﬁith subsequent drop in revoluticns of the rotor because of a great
initial disturbance in deviations of blades in the plane of rdtation
(axis of rotation of the rotor was inclined to earth at an angle of
14°) there appeared ground resonance — the blades broke and damaged
the helicopter. ' ;
|

So from one experienced example to another all new aspects of

this problem appeared.

Inasmuch as accurate. calculatlion of necessary oscillatlion damping

of bladFs (and with oscillations of.ground resonance there is equal
importahce in oscillation damping of the apparatus carried out by

the sho%k absorber of the landing gear) at that time dild not exist,
designers tried to select the minimum value of the moment of frictlion
ol the damper on the hub. This was dlctated by a tendency to
decrease variable bending moments appearing in the presence of the
damper with forced oscillations of blades in flight.

With friction dampers, as is known, there appear oscillations
with excitation threshold. 1If the excitation is small — the exciting
moment 1s less than the moment of friction — oscillations in general,

r

FTD-MT-24-103~68 xxvii

g R T

o




do not appear. iere on a safe helicopter with respect to ground
resonance, which is already in operation, vibrations suddenly appear.
This is explained by the fact that in the given speclal case the
initlal disturbances proved to be greater than usual. This case (_ ;
noceurred on the Ml-1 helicopter when it overtaxied obliquely through l
deep tracks from a motor vehicle. A random disturbance of the bank

f;reatly rocked the machine on the pneumatic tires, and it acquired so

large ampllitudes of oscillations that the available damping in

bushing was insufficient and ground resonance appeared. Pilot

G. A. Tinuakov then coped with 1t very simply; he took off and the
vibrations ceased, sirce the elastic coupling connection with earth

was disturbed.

Thils case suggested the necessity of the application of viscous
friction, 1.e., hydraulic oscilllation dampers of blades in the hub
for which the moment of friction does not remain constant but grows
with the amplitude of oscillations.

However, subsequent practice constantly required the
improvement and development of the theory in this region. It suffices
to remember at least the appearance of ground resonance vhen the
helicopter operates on & tie. .

Several cases bf ground resonance occurred also at a time when
the hellcopter, in taxiing during takeoff or landing, only wegkly
touched;land with its wheels, when the tractive force of the rcoor
becomes close to the welght of the apparatus and shock-absorber
struts with the usual preliminary tightening appeared completely
releaseq. The difference between welght and tractive force ofl the

. 1
apparaths was absorbed only by the pnuematic tires of the whedls,

It;is clear that not only are frequencies of oscilllation of the
machinelchanged, but also damping of the struts i1s absent. Here then
ground resonance appeared which on Ehe hellcopter not attached or not
taxiing with a very small load on the wheels nevér appeared.

J

In order to avoid such cases there began to be used the so-called o~

dual chamber struts of the landing gear — shock-absorbing struts { ¥

Nw—
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hraving a second low-pressure chamber absorbing the energy of oscilla-
tions of the apparatus when 1t touched land only by slightly pressed
oneumatic tires and the main struts did not operate.

There is speclal importance in questions of the theory of
s#round rescanance on two-rotor configurations when the elastic system
connecting both rotors, be it the fuselage with a longitudinal or
the wing with a transverse contipuration, has low frequencies of
ratural oscillationz. ''ith such oscillations there can appear
considerable mecvements of ti.e rotor hub, which create the possibllity
~f energy exchange between oscillations of the blades and oscillations
of the 1ifting structure. Osciliations of such type are possible
not only on land but also in flight.

A similar problem appears with the designing of tail rotors with
vertical hinges located on the elastic tall girder.

The creation of a harmonious and perfected machine is possible
oniy in the case when the designer is quite competent not only:in
the general problems of designing but alsc in special problems
connected with the theory and design of its separate elemerits.

On the contemporary helicopter there is a4 large number of,
responsible high-loade.’ mechanical units whose reliablility and
service 1ife iIn many respects depend on the efficiency of their
bearing unitas. Therefore, designers of helicopters should be
familiar with the thcory and design of anti-friction bearlings. This
especlally pertains to cases of operation of anti-friction bearings
in complex combinations of external loads and during oscillatdry
motion &ith small amplitudes.

!

Therefore, in this book there 1is included a chapter in which
the answer to questlions of theory and design of bearing subassemblies
of bushings, cyeclic pitch controls and other units can be found.

One of the most interesting questions described in Chpater IV is
the theory of special thrust roller bearings, In which owlng to the

location of the rollers at an angle to the radial dircction tne
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separator during osclllatory motiorn not only oscillates together

with the sliding ring but also continuously revolves in one direction.

This prevents local wear of the rocking vaths and increases the
service 1life of the bearing.

It should be noted that the application of such bearings in
axial hinges of main rotor hubs provided a considerable increase in
their service life.

Helicopter construction requires a high general level of
theoretical and scientific training of the design engineer, since
dynamic problems for helicopters (aircrafts with revolving wings) are
of considerably greater importance than those for aircraft
(apparatuses having stationary wings, and even now and wings turning
and deflect bYack). This is confirmed by the fact that those few
designérs who were able to give a considerable contribution to the
development of helicopter construction, and, even more, those who
had practical success, were at the same time the great sclentific
theoreticlians. These were Academician B. N. Yur'yev, Professor
A. M. Cheremukhin and Professcr I. P. Bratukhin - creators of first
Soviet helicopters of the 1930's from 1EA to 11EA; Professor Focke —
designer of hellcopters FW-61 and FA-223 in Germany, one of ploneers
of aviation Lours Brequet and Professor Doran, who created the first
French hellicopters, and others.

It should be noted that at present the theoretical training of
designers working in leading firms of the world in the field of
helicopter construction, as far as can be judged from literature, 1is
very high. Therefore, nct only the design engineer but also the
designer working in helicopter construction should not have any
difficulties in mastering of the material discussed below.

The authors hope that this second book of the given work will be
discovered by readers and will be useful.

e
.

!

FTD-MT-24-103-68 XXX

0T




—

B I p—

On the inserts there are photographs of basic Soviet helicopters
found in serilal productlon. The first Soviet series of helicopters ?
with reciprocating engines, the Mi-1l and Mi-4, were created in 1949
and 1252, Bullt in great quantities, these are now some of the most
widespread types of helicopters.

Shown further is the helicopter Mi-6 with two turboprop engines,
developed in 1957, and helicopter Mi-10 (1962), a flying crane with *
high landing gear adapted for transport of large-scale loads rigidly |
secured under the fuselage. In 1965 it established the world record
for load capacity for helicopters when 25 tons were lifted to an
altitude of 2830 m.

Helicopters Mi-2 and Mi-8 are alsc shown, which are the second
generation of Soviet light and medium helicopters. The 1lifting systems
from Mi-1 and Mi-4 were retained on them, but instead of having one
piston engline there are two turboprop engines.

Footnote

'0n the helicopter Mi-U4 flutter always appears primarily in these
conditions.
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CHAPTER I
ELASTIC OSCILLATIONS AND BLADE STRENGTH

The calculatlion of elastic oscillations is an obligatory
element in the process of the creation of new blade designs. It
enters as an inalienable part into the calculation of blade for
strength.

To create blades of a helicopter it 1s necessary to solve
much of the time very complex technological and design problems.
With their solution one should consider the most diverse requirements
and first of all the requirement of providing high fatigue strength
to the structure.

The work involved in the creation of blades includes usually the
following basic stages: '

— Selection of materials for separate elements of the structure,
determination of optimum parameters and designing of the blade.

— Selection of the best technological processes providing the
highest fatigue strength of its basic force elements and manufacture

of the blade.

— Flight tests with the measurement of effective stresses 1n
flight.

— Dynamic tests and appralsal of the blade service life.

FTD-MT-24-103-68 1
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— Carrying out of a complex of finishing works, including works
on the lowering of effective stresses and increase in fatigue
strength of the structure. . (

—~ Completing tests and starting construction 1in serial production.

— Analysis of the work of serial blades in different conditions
of mass and prolonged operation and the carrying out further
improvement of commercial construction according to the results of
this analysis. . v

Calculations of elastié blade osclillatioris must be fulfilled in
many stages of this work but mostly in the most 1lnltlal stage, which
is finished by designing of the blade.

In the selection of parameters of the blade and materials for
its manufacture, one of the basic criteria is the magnitude of
effective varying stresses in flight and the relationship between
these stresses and stresses characterizing fatigue strength of the
structure. It is possible to learn the magnitude of thece stresses
and to give an appraisal of the structure with respect to 1ts
strength in this stage only with the nelp of calculation. To
design a blade in the required, usually very short, periods the
designer should have at his disposal perfected methods and means of
fulfillment of the design, which allow glving a rapld answer to any
of the appearing questions.

Of no lesser importance 1is the calculation during finishing
works. As a rule, in newly created blades there appear too great
varying stresses, and the designer has the problem of reducing them.
For this it is first of all necessary to confirm by calculation the
regularity of the appearance of stresses measured in flight and
then to find the possibility by means of changing certain parameters
of the blade to decrease their magnitude. To find the solution of
this problem without calculation, as & rule, means to lose very much
time in checking incorrect proposals and to expend a great deal of
means in the manufacture of blades, which subsequently after a flylng -
check will be rejected.

FTD-MT--24~103~08 2
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Reducing varying stresses 1s extremely important and permits
not only increasing the reliability and service time of the blade
but also improving the technical flying characteristics of the
helicopter such as, for example, the speed of flight and load
capacity, since for contemporary helicopters they are frequently
limited in conditions of stability.

The solution to all these questions would not create considerable
difficulties if the calculation gave results, quite accurately coin-
ciding with the fact that it is observed in reality during measurement
of stresses in flight. Unfortunately, this is not quite soj; not in
all cases does the calculation give satisfactory results for
practice.

The most reliable are calculations by determination of frequencles
of natural oscillations. Attalned in them is an accuracy usually of
the order of :2%. Therefore, all calcqlations connected with the
exclusion of resonances provide a very high reliatility. Of
noticeably lesser reliabllity are calculations of varying stresses
at crulsing and maximum speeds of flight. The stresses obtalned
with these calculations usually prove to be 15-25% less than stresses
measured in flight. Therefore, the calculation of stresses in these
conditions does not always satlsfy the designer. But it 1s necessary
to say that this error can to a certaln degree be compensated, if
into the calculation there is introduced a correction which considers
the constantly observed divergence with the experiment.

Still a great error is possible during calculation of varying
stresses at low flight speeds.

From what nas been said it 1s obvious that the method of
calculation of varying stresses in the blade still requires further
development, Nonetheless, practice shows that the selection of
parameters and tinishing of blades without the use of even such
still not quite perfected methods of calculation proves to be very
ineffective. Therefore, in this chapter there is given a sufficlently
detalied accowit of different methods of calculation. This, as it
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seems to us, enables giving to the reader a concept about all
peculiarities of the load of the blade in flight, showing the possible
means of approach to its calculation, revealing and estimating the
advantages and deficiencies of different methods and, finally,

giving to engineers studying this problem the basis for further
deepening of investigations and improvement of methods of calculation.

Along with a description of different methods of calculation
of elastic oscillations of the blade, to which the basic attention
is given, in this chapter there are also discussed basic principles
on which are based calculations of blade for strength and determination
of its service 1life (§ 11).

Regarding concrete data on the selection of parameters of the
blade, it 1s expedient for us to refer this question to the section
"Designing of the blade," which will be included in the third book.

§ 1. Problems of Calculation, Basic Assumptions and
Derivation of Differential Equations
of Flexural Deformations
of the Blade

1. Finite Goal of the Calculation of Elastic
Oscillations of the Blade
The calculation of elastic oscillations of hlade appears
necessary for the solution of a number of problems appearing in the
designing and finishing of a helicobter. The most important of them
is the problem of the determination of variable flexural stresses in
the blade. Determination of these strésses is the main part of
calculation for strength. Therefore, the main task of this chapter
is to determine elastic oscillations of the blade for calculation of
its strength.
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Determination of oscillaticns of the blade appears necessary
and for the solution of many other problems. Without the calculation
of these oscillations 1t is impossible to find the loads, arriving
on the helicopter, its hub, control system and on the drive
transmission of the rotor. Determination of live loads arriving from
the rotor blades to the helicopter to a considerable degree solves
the problem of the determination of vibrations of a helicopter.

There is also interest in the question of the influence of
osclllations of the blade on the flying characteristics of the
helicopter. Limitations put on the flying characteristics by
separation of flow from the rotor blades are determined previously
always by the permissible amplitude of oscillations of the blade.
With an increase in these amplitudes varlable forces in the control
system and vibration of the helicopter are lncreased. Therefore,
the calculation of elastic oscillations of blades permits most
accurately estimating the borders of conditions permissible in
conditions of sepafation of flight of the helicopter.

|

To a certaln degree the oscillations of the blade, and first
of all ﬁts torsional vibrations, affect the aerodynamic properties
of the fotor with removal from conditions with the separation of
flow.

Let us discuss more specifically the first of the problems
stated here.

2. Calculation of Blade Strength

Calculation of blade for strength 1ﬁcludes determination of
constant and varylng stresses at all points of the blade structure
in different load conditlions. The most dangerous of them are
separated as cases calculated for strength of the structure.

Usually with the creation of new blades, when the time assigned
for fulflllment of the calculation and thelr analysis is very
greatly limited, the number of calculation cases ls desirably reduced
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to a minimum. Experlence shows that 1t is sufficlient to examine one
case of the loading of blades under conditions of helicopter
operation on land and a number of flight cases on different flight
conditions. :

The first case provides for the necessity of design of a blade
supported by a vertical hub limiter when the action of centrifugal
forces was ceased or almost was ceased. This occurs when the rotor
does not rotate or is in the initial stage of acceleration, or it
stops after the flight. In the absence of centrifugal forces the
forces of welght or inertial forces, appearing with a blow of the
blade against the limiter, cause 1in it considerable flexural stresses.
Especlally difficult for the strength of the blade are.compressive
stresses. Experiments show that separate overloads of the blade,
at whlch there appear considerable compressive stresses, can have
an effect on the fatigue strength of the structure and, consequently,
also on its service life. Usually static stresses from the bend of
the blade, under the action of its intrinsic weight, are limited to
magnitudes °G = 25-28 kG/mm2 for a blade with a steel longeron and
Og = 7.0-7.5 kG/mm2 for a blade with a longeron made of Duralumin.

From the polnt of view of calculation this case presents no
diffliculties. Therefore, we will not discuss 1t in detall here.

Other cases pertaln to different conditions of flight of the
hellcopter, when to the constantly effective stresses from centrifugal
forces are added constant and varying stresses from bending of the
blade. This combination of loads proves to be very difficult for
fatigue strength of the blade constructlon.

3. Conditions of Flight Which are Dangerous for
Fatigue Strength of the Construction
heasurements of stresses in flight show that blades of the heli-
copter experience considerable live loads dangerous for strength of
construction in conditions of two different types.

T e i o e b s — 1
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The first type of conditions pertain to conditions of flight at
low speeds when the speed of flight comprises 3-8% of the final

velocity of the blade (u = 0.03-0.08). In these conditions of flight

there is observed a sharp increase in amplitudes of flexurail
vibrations of the blades, and varying stresses are increased
respectively.

The indicated speeds of flight 1is used by the helicopter with
acceleration, horizontal flight with stabilized low speed and in
conditions of deceleration. Usually the greatest varying stresses
appear in conditions of deceleration. Considerable stress can also
appear in conditions of #teep descent with low horizontal speed.

Tn conditlons of design load flights at low speeds are, as a
rule, short-term conditions of the flight, in any case for helicopters
conducting transport work. However, because of great stresses
frequently these conditions determine the service life of blade by
conditions of durability.

Flights at high speeds bélong to the second type of conditions
dangerous for fatigue strength. These are, first of all, flights at
crulsing and maximum speeds. The flight at cruising speed is usmally
the most continuous mode of flight and therefore introduces into the
deslign considerable fatligue damage.

The sharp increase 1in varying stresses at low speeds is
explained first of all by the considerable irregularity of the field
of inductive speeds appearing at these conditions In the flow flowing
through the rotor. Moreover, in its absolute magnitude inductilve
speeds in these conditions reach the largest values as compared to
all other conditions of flight. Therefore, thelr influence on the
magnitude stresses at low speeds of flight considerably increases.
The alternating field of Inductlive speeds leads to the appearance
of variable aerodynamic loads on the blade. Under the impact of
these loads the blade accomplishes Tlexural vibrations, and this
is why in 1t there appear conslderable varying stresses,

13
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At high speeds of flight variable aerodynamic loads appear
mainly due to the pulsation of relative flow rate and change in
angles of attack of blade sections along the azimuth of the rotor.
The alternating fleld of inductive speeds in these conditioiis weakly
affects the values of the aerodynamic load.

With calculation for strength 1t sometimes is also necessary to
examine the case of possible rotor acceleration in flight when
centrifugal forces considerably increase. Here the constant part of
effective stresses in the blade is increased.

k. Assunption of the Uniform Fileld of Induced Sreeds

From what has been mentioned above, it 1is clear that the
calculation of variable aerodynamic loads on low speeds is impossible
without taking into account the alternating field of induced speeds.

With an increase in speed of the flight the absolute magnitude
of induced speeds drops. The influence of their irregularity on
magnitudes of aerodynamic loads decreases. Therefore, starting from
average speeds ~f flight, when u > 0.2, with the calculation of
varying stresses in the blade it 1s possible approximately to consider
that the field of 1nduced speeds is uniform, 1.e., that the induced
speeds are constant along the disk of the rotor. This assumption
leads to very serious simplifications of all the computations and a
sharp reduction of duration of the calculation. Therefore, 1t is
widely used in practical calculatlons.

However, the accuracy of results obtalned taking into account
this assumption frequently does not satlsfy the designer. Therefore,
in many cases witn the calculation of flight conditlons with average
and great speed thls assumption must be renounced.

5. Assumptions Utllized During Calculation of
ferodynamic Loads on the Blade Profile

In all methods of calculation discussed in this chapter, it
is assumed that the aerodynamic forces having an effect on the blade

profile can be determined by usirg aerodyrnamic coefficlents referrin-
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to stationary flowing around of an infinitely long wing in plane-
parallel flow. The nonstationaryity of the flowing around is
considered only in values of angles of attack of the profile in which
inductive downwash 1s introduced.

Consequently, to determine forces having an effect on the
element of the profile, it 1s sufficlent to determine its angle of
attack a and relative speed of flowing around its flow U. Then,

knowing a and Mach number M-% (here aew is the speed of sound),
! ]

along the polar of the proflile one can determlne coefficlents cy
and ¢, and, consequently, also forces having an effect on the profile.
Wren necessary there 1s determined also coefficlent m, .

If in examined flight conditions the angle of attack of the
profile does not exceed o ~ 9°, and the Mach number is not more
than M & 0.5, then its influence can be disregarded, and we can assume

that

oe, (1.1)
where ¢* is the tangent of the angle of inclination of dependence

cy = "(a).

This assumption is used during calculation of loads in
conditions sufficiently remote from separation in which, furthermore,

it 1s possible to disregard phenomena connected with the
compressibility of flow.

The possibility of application of certailn assumptions with
respect to the method of determination of aerodynamic forces has
decisive importance in the selection of the method of calculation of
stresses, which in the examined case should be used. Due to this
in various conditions of flight the most expedient appears to be
the application of different methods of calculation. Therefore,
subsequently we wlll separate three types of conditions, which are
distinguished by the fact that 1n each of them best results can be

——
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R obtained by different methods of calculation. These are conditions
-‘of low, average and high speeds. .

. In conditions or low speeds‘*t is. impossible fiot to considef the
_alternating fleld of inductilve speeds, but with moderate loads on .

the blade it is possible to‘use linear aerodynamics. At .average
filight speeds calculatlion of the alternating field of inductive.
speeds appears necessary only with the solution of speciallpboblems
connected with.the necessity of separation of separate high harmonics
of aerodynamic loads. Calculation of norlinear dependences in the
determination of aerodynamic coefficients at these speeds is ~almost

"~ always unnecessary And finally, in conditions of high speeds

1ying near the border of separation,. caleculation of these nonlinear-'
ities becomes obligatory,»whereas the changeability of the field of
inductive-speeds in the greater part of cases cannot be considered.

The enumerated considerations lead to the fact that separate
methods of calculation can be attached to definite conditions of
flight.

6. The Connection Between Deformations with Bend in
Two Mutually Perpendicular Directions and’
Assumptions in Calculations Taken
in Connection with This
Usually the blade of a helicopter is designed in such a way
that the main elastic moments of. inertia of its sections are
essentially different in magnitude. Therefore, the blade is a rod

stretched by centrifugal forces whose every section possesses

different rigidity in two mutually perpendicular directions. In order

to characterize these directions through the axis of the rod in the

‘direction of principal axes of the section there are conducted planes
‘called planes of the greatest and least rigidity (Fig. 1.1).

Frequently for creation of aerodynamic blade twist not only
frame forming its external surface twists, but also the blade
longeron. In this case directions of the main elastic axes of the
section are changed along the length of the blade, and geometrically
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it becomes a twilsted rod +n other cases aerodynamic twist ‘is
fulfilled only due to the turn of the blade frame with reépect to
the longeron, : :

In external forces in the most diverse directioris act on the
blade proflle. This makes the problem of blade bending a very
complex spatial problem.

At the same time the magnitude of geometric twist for blades
of helicopters is not very great (of the order of 6-12°) and
considerably less than that for aircraft propellers and blades of
compressors and turbines. .As different “appralsals show, the "~~~ -
influence of this twist on results of calculations 1is small.
Therefore, in all the methods of calculation gilven here we will
disregard twistness of elastic axes of the blade longeron and conslider
that the direction of the plane of greatest and least blade rigidity
is constant along its length.

This assumption permits projecting all external forces on these
.planes and solving the two elastically unbound two-~dimensional
problems of blade bendlng in two mutually perpendicular directions.
Upon completion"of the calculation for determination of stresses at
different points of the blade sectlion, results of these two
calculations can be added.

The profile of the blade section permits increasing dimensions
of the longeron in the chord plane, and limits them in a perpendicular
direction. Therefore, tne plane of the greatest rigldity 1s usually

close to the plane passing through the blade chord. This circumstance
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and also the fact that in the chord plane the magnitude of aerodynamic
forces 1s usually less than that in the plane perpendicular to it

‘leads to the fact that the magnitude of flexural stresses 1s usually

larger with ﬁending in the plane of least rigidity and less in the
plane of greatest rigidity. If one were to examine contemporary

.désigns of blades for which fatigue strength is approximately

identical with bending in all directions, then it will appear that
bending in the plane of least rigidity is considerably more dangerous.
In practice usually all difficulties appear in connection with the
necessity to provide strength with bending in this plane. Therefore,
in this chapter methods of calculation ol blade oscillations only
in the plane of least{rigidity,will be examined. With calculation
in thils plane 1t is possible to apply the additional assumption about

- the fact that the plane of least rigidity coincides wlth the plane

paésing through the axils of the rotor. We will subsequently call
this plane the flapping plane."

7. Calculation of Torsional Deformations of the Blade

: During Calculation of Flexural Oscillations '

Twlsting deformations change the angles of attack of the vlade
sections ¢f blade and, consequently, also the aerodynamlec forces
having an effect on them. Therefore, they should be considered
during calculation of aerddynamic loads and oscillations of the blade.
However, calculation of torsional vibrations of the blade 1s consider-
ably difficult and greatly complicates the calculation.

At the same time 1In a whole series of cases 1t does not lead to
consliderable refinement of the results. Therefore, calculation of
torsional deformatlons should be produced only if there 1s an
imperative necessity. For example, this 1s true in those cases when
flexural flutter, although such a position 1ndicates insufficient
reserve prilor to flutter and cannoé be considered permissible.

To calculate torsicnal deformations 1t is necessary to solve
a system of differentiai equations of flexural-torsional vibrations
of the blade. The solution of thls system 1s fulfilled with the
calculation of flutter. Therefore, such a method of calculation,
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called the general method of calculation of flutter and flexural )
stresses in the blade, is referred in the first book (see § 7 of

" Chapter IV).

In this chapter only methods of calculation of free torsional
(§ 5) and flexural-torsional vibrations (§ 6).

8. Two Stages of Calculations in the Designingof
the Blade: Calculation of Frequencles of
Natural Osclilations and Calculation
" of Stresses

"If a newly created blade of a helicopter does not very greatly
differ in its geometrlc and mass characteristics from an already

made and proved blade, then 1t 1s possible to affirm that on 1ldentical

conditions of flight, the varylng stresses acting in it will be
apprcximately the same as in the blade which 1is 1its proiotype.
However, this positicn 1s disturbed 'in those cases, when due to a
certain change in its parameters the blade appears in resonance wlth
some harmonlic of external forces. '

The practice of blade designingz shows that sufficliently reliable
blades can be created only when none of the blade's natural |
frequencles coincides with frequenciles of external forces and l1ls at
sufficient distance from them. This pertains to osclllations of
the blade both in the plane of the least and in the plane of greatest
rigidity. It follows, of course, to stipulate that not all harmonics
of external forces are dangerous for strength but only those whose
magnitude 1s sufficlent for creation of stresses considerable.in
magnitude. In practiqe usually the absence of resonances snould be
provided with harmonics no higher than the eighth to revolution of
the rotor, Higher harmonics of external forces are not substantial.

Thus, 1f a gross evor 1n the selection of characteristics of
the blade is not allowed, then far the limitation of varying stresses
in permissible limits, it appears sufflcient only to provide the
absence of resonances. It 1s not necessary to produce.calculation of
values cf amplitudes of varying stresses in this case. Therefore,
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frequently an experienced designer can be limited only to the first
stage of design of a blade: determination of its frequencies of
natural oscillations and cons :ruction of a resonance diagram.

P

From what has been said 1t results that the calculation of
frequencles and forms of naturcl osclilllations of a blade 1s not
only an auxiliary stage for the calculation of stresses, but it has
an independent importance as a preliminary stage of calculation of
blade for strength.

9. Idealized Blade Models Used in the Calculation

With fulfillment of the calculation it is necessary to present
f the blade in the form of a certaln idealized mechanical model for
; which there would be correct all the accepted initial assumptions,
so that subsequently in the process of calculations there would be no
need to us2 approximate mathematical operations.

During calculation on digital computers the problem should be
stated in such a way that its solution is possible with any accuracy
f assigned in advance and accessible for the machin..

e e v e e

As experience has shown, the application of methods of calculation
using approximate mathematical operations very frequently l=ads to
different misunderstandings. In a number of cases, only because
of the inaccuracy with calculations, can it appear impossible to
bring the calculation to an end. Thus, for example, during
calculation of forms of natural oscillations by the method of
successive approximatlions, it is necessary to calculate a whole
series of integrals. PFrequently this 1s done by the trapezold method.
;‘ With the limited quantity of intervals of 1Integration this method
; gives so large an error that during calcualtion cf forms of
: oscillations of higher tones, the ordinate of which are calculated
L in the form of small differences of large values, the method of
5' successive approximatlions ceases to converge.

- m—— e a—
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This circumstance requires speclal cautlon during the use of A
i
approximate methods of calculations. Therefore, 1t 1ls more expedien
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to introduce a simplified idealized model of a blade which would be
convenient to calculate with an accuracy maximum permissible for the

machine.

Three different types of mechanical models which are frequently
used 1n calculatlions are well-known.

Beam model with continuously distributed parameters. In this
model the blade 1s represented in the form of a beam with continuously
distributed rigldities EI, linear mass m and parameters determining
the magnitude of linear aerodynamic load.

Such a model is very convenient with the composition of initial
differential equatlons and application to them of well-known methods
of approximation of the solution, but it appears unsuitable for
complete numerical calculation. Below we will frequently use such
a model for the derivation of calculation formulas in order in the
stage of numerlcal calculation to use formulas recorded by analogy and
which pertain to the model with discrete parameters. In these
formulas all the integrals of functlions dependent on the radlius of the
blade are replaced by sums of discrete quantities referring to a
series of fixed radil of the blade.

Beam model with concentrated loads. In this model the blade is
represented in the form of a system of concentrated loads connected
with each other. The connection between these loads is carried out
by meaﬁs,of weightless beams possessing constant (in length) hend
rigidity equal to the riglidity of corresponding sections of the blade.

With the determination of aerodynamic forces it is assumed that
to every load is fastened a separate flap whose area 1s equal to the
area of the corresponding blade sectlion. Usually it 1s assumed that

the area is

sl-_;"(ll-l.l""ll.lﬂ) b, (1.2)
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where 2 and & are lengths of adj)acent sections into which

i-1,1 1,1+1
the blade is divided with calculation; b

section between these sections.

g chord of blade in the

This model most accurately reflects the propertles of the
real blade. Therefore, in almost all cases during practical
calculation it will be used.

It 1s necessary, however, to note that the beam model possesses
these positlive properties only at the number of sections z equal to
25-30 and more. With a decrease in the number of sectlions the form
of deformations of the beam model starts very greatly to differ from
the form of deformations of the blade. This circumstance will be
more specifically illustrated in § 10, No. 3. Furthermore, appllication
of the beam inodel leads in a number of cases to a very complex system
of formulas and sometimes even hampers fulflllment of the calculation.
In these cases the simpler hinged model of the blade can be used.

Hinged blade model. In this model the blade 1s represented in
the form of a multihinged 1link consistling of absolutely rigid
weightless sections with masses concentrated in the hinges. The
bending rigidity of the blade is simulated by elastic elements
concentrated in the hinges. Under the impact of external forces the
axis of such a chaln will take the form of a broken line and not a

smooth one as in the model of the beam type. This circumstance, Just
as the operation of the selection of rigidity of elastic elements,
intrcduces a definite error with transition “com the blade to a
mechanlcal model.

At the same time the application of a hinged model creates so
considerable simplifications in the calculation formulas that sometimes
the application of improved methods of calculation which were
practically unrealizable in the use of the beam model 1s possible.

This compensates for deficlencies pecullar to this model.

It 1s still necessary to add that with a decrease in the number §
of sections into which the blade in the calculation 1s divided,
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properties of models start very greatly to differ from properties

of the real balde. But for the hinged model these errors iricrease
not as rapid as those for the beam model. Due to this the hinged
model can appear more profitable in the application of rough methods
of calculation when the blade 1s divided into a small number of
sections, let us say of the order of 10-12.

10. Derivation of the Differential Equation of Bend of
the Blade in the Field of Centrifugal Forces
with Oscillations in the Flapping Plane
Let us represent the blade in the form of a beam with cont!nuously
distributed parameters, Let us separate for consideration the
element of the beam with length dr. The forces having an effect on

this element are shown in Fig. 1.2.

Fig. 1.2. Diagram of
forces having an effect on
the element of the blade.

Let us caompose the equations of equilibrium of this element,
being limited to quantities of only the flrst order of smallness.
Then the sum of projections of forces on axis y can be recorded as

Vdf+‘Q-00 ( 1. 3)
and the sum of moments of all forces with respect to point A
" Qdr+dM—Ndy=0, (1.4)

where W 1s the linear external load on the blade; Q — shear
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force in the blade section; M — bending moment; N = centrifugal force
in the blade section.

From equation (1.3) we will obtain
Wa—Q'. (1.5)

Here and below the prime denotes differentiation with respect to
the radius of the blade.

Differentiating equation (1.4), we will cbtain

Q=—M"+NyT. (1.6)

If we assume M + Ely" and substitute expression (1.6) into
equation (1.5), then we will obtain the well-known differential
equation of flexural deformations of the blade in fleld of centrifugal

forces:
EIFY — [Ny} =W. | (1.7

Let us present the external load W, which conslsts of aerodynamic

and innertlal loads:
W"T'-ME. (1.8)

where T is the linear aefodynamic load; m — linear mass of the blade.
The two dots here denote differentiation with respect to time.

Substituting expression (1.8) into equation (1.7), we will obtain
the differential equation of blade osclillatlions:

-yt +-my=T, (1.9)

In a vacuum, when the aerodynamic load T is equal to zero,
equation (1.9) will describe free oscillations of the blade in the

field of centrifugal forces:

24
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E1S) ~ [Ny 4-my =0. (1,10)

Solution to this equation has well-known difficulties. Therefore,
in § 2 in the beginning 1ts solution for the case N = 0 pertaining
to an irrotational blade will be examined.

11. Differential Equation of Blade Bending in the
Plane of Rotation of the Rotor

With bend of the blade of rotation, because of concentricity
of the field of centrifugal forces on the element of the blade, there
will act an additional force which did not enter into equations in the
flapping plane. Taking into account this circumstance, equation (1.8)
should be copied in the form

WeQ+e’me—mi, C(1.11)

where Q 1s the aerodynamic force in the plane of rotation; x is the
movement of blade elements in the plane of rotation.

Substituting (1.11) into the equation analogous (1.7) but
recorded for the plane of rotation, we will obtain the differential
equation of bend of the blade in this plane: t -

(E1 X} — [Nx') ~?mx + mx=Q. (1.12)

This equation differs from equation (1.9) only by the additional

2
term w mx.

§ 2. Pree Oscillations of a Blade of an
irrotational Rotor

1. Method of Calculation Leading to the
Solution of the Integrsl Equation of
Blade Oscillations
The calculation of forms and frequencies of natural oscillations
~
of a blade of an irrotational rotor 1s quite widely discussed in

literature (see, for example, [1]). In this paragraph only certain
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basic positions and somewhat refined formulas used during practical
calculations will be briefly repeated.

Let us consider the differential equation of oscillations

obtained for the blade model with continuously disturbed parameters.

If in equation (1.10) we assume N = 0, then it will take the form
[EIVY +my=0. . (2.1)
Having assumed
y=ysin py | (2.2)
and substituting into (2.1), we will obtain
LETYY — pPmy=0, ' (2.3)
With further calculations we will omit the dash above the y.
Let us integrate eguation (2.3), taking into account boundary
conditions of the blade fastening. For simplicity we will examine

the case of the blade rigidly sealed in the shank with these
boundary conditions:

—forr=20;y= 0; y' = 0; .
— forr=R; M=0; Q=0.

As a result of the fourfold integration, equation (2.3) will
be converted into an integral equation fo the fornm

[ ""RR
"'".S.SESS""’- (2.4)

Equation (2.4) 1s solved usually by the method of successive

approximations. Having assigned the arbitrary form of y, standardized

by some manner, for exampie

'.-lo (2-5)
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we will substitute it Intc the right-hand side of equation (2.4),

Fulfilling integration, we will obtain the function

[ 4 "ﬁll
o= {57 ) fmrer (2.6)
] re
. 2
such that y = p u.
Whence, using condition (2.5), we obtain

L (2.7)

--.-.-.
where ugp is the value u for r = R.

Let us repeat the same operation, taking the new value

'?p’u. (2.8)

Fulfilling the above-described operation several times, one can
. be certain that the fcrm of oselllations y and frequency p converges
to defined values which are the solution of the integral equation
(2.4).

The thus used method of successive approximations results in
the fact that the determined form of y converges to the form of the
lowest tone of natural oscillations of the blade.

To determine the subsequent tones it 1s necessary still to
fulfill the condition of orthogonality of tones of natural
oscilllations. This condition will be examined in No. 3.

With practical application of the method of calculation
expounded here 1+t 1s very important to select a sufficiently accurate
method for calculation of the integral expression (2.6). 1If
parameters of the blade are assigned in the form of continuous
functions, then the simplest method of calculation of integrals (2.6)
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5 the one usually used In cuch casSes, the trapezium method.

However, as was already noted atvove, wlith caiculation of higher tones
of oscillations the error inserted by this operation leads to so
consliderable errors that such a method ca'not be used for practical
purposes. This deflclency vanishes if for the caiculation of integrais
(2.6) we use the method resulting from examination of the mechanical
model of the blade with discretely distributed parameters.

2. Calculation of Forms and Frequencles of Natural
Oscillations of the Blade Model with
Discretely Distributed Parameters

For the calculation let us use the model of the beam type with
concentrated loads (see § 1, No. 9). For this we will divide the
blade into z sections. Lengths of the separate sections can be
c¢ifferent. The welght of the blade will be concentrated along the
edges of these sections in the form of separate discrete loads with
mass m, . The flexural rigidity of the blade will be represented by
a step curve in such a way that for the extent of each section it

remains constant (Fig. 1.3).

[ 2
S
b
- S
b
.
8
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L
° -
s P
0t l

dr 32

Re m m =, m = n" a, e, "

Fig. 1.3. Calculation model of the
bilade.

In the same way as In No. 1, we will examine in the
beginning the case of the blade sealed in shank. The operation
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determined by equation (2.2) in tnis case car be carried out

absolutely accurate.y.

Actually, let us as3ign the arbitrary form of load movements
of +the model Yq- Here we cail the form of movements the system of
discrete values Yy (1=0,1, 2, 3, ..., 2 — ordinal number of
concentrated loads of the model). Thus, just as above (see condition
2.9), let us assume that Y, * 1. If movements y, are known, one
can determine the inertial fcrces of the loads iwth thelr oscillations
at the frequency p = 1. They are determined by the expression

Fimmy, , (2.9)

Knowing the inertial forces, one can determine ali the bending
moments about the system of simple recurrence formulas of the form

M=l 41 Foar—0isMip1—8u1Musl (2.10)

where 11 141 are the length of the blade section between the i-th
3
and 1 + l-th concentrated mass.

Coefficients ay and b1 are determined by the formulas

‘ .

b -
ey

Calculation of bending momernts by the formulas (2.17) should
be started from the end of blade, assuming in the beginning that
{ = 2 - 1 and bending moments Hz and Mz*l are squal to zero.

After determination o{ the bending moments it is easy .o
determine defornations of the blade. Blade deformations with
cscillations at frequency p = 1 will be, as above, designarted by the
lettei u.

The magnitude of these deformations is determined by the recur-
rence lormulas of the form:




Biemlig, Dy = by gty g~ a1y, (2.11)

where {
Dyywmdy My oM+ 4 M, (2.12)
Here ‘ |
-tiie) . . |
O=2(dis4-4). )

Calculation deformation uy should be started from the shank of
the blade, assuming in accordance with boundary conditions accepted
here that uy = 0. All quantities with negative indices should also
be assumed equal to zero.

Thus fulfillment of operations (2.10) and (2.11) in reference
to the beam model with discrete distributlion of parameters leads

to the calculatlion of accurate values of ui.

Determining p2 Just as earlier [see (2.7)]

1 .
P (2.14)
and new values
»
y=pu, (2.15)

we repeat all operatlons as many times as 1s necessary 8o that the
method of successlve approximations agrees. Usually the calculation
1s considered finished when the difference of values Yy in two
successive approximations appears less than the assigned accuracy ey.

3. Condition of Orthogonallity and the Calculation of §
Subsequent Tones of Natural Oscillations :
The method of successive approximations stated above leads to
the determination of lowest tone of natural osclllatlons. With
determination of following tones it 1s necessary to still fulfill i
cenditions of inaependence of oscillatlions according to different torer. -
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Let us 1magine that free oscillations of the hlade in a vacuum
occur simultaneously by two forms yij) and yim). One can determine
the energy of oscillations according to each of the forims separctely
by peak values of the kinetic energy:!

Ki=Zm, [py%
]

K.-'z m‘ [p.y:-,]’. (2 . 16)
]
On the other hand the total energy of the system, {luctuating
simultaneously by two forms, c¢. be determined by the peak value
of the total kirnetlc energy:

K== E;"'.:M[.’.’M” +2 J(‘-)]z, (2.17)
r .

The system possesses this kinetic energy at that moment of
time when the tlade passes during oscillatlions through the neutral
position simultaneocusly by two forms yiJ) and yém). Because of the
distinction in values of frequencles of natural osclllations such a
positjion can appear relatively rarely, but can easily be created
artificially by means of assignment of corresponding phases 'of

oscillations at the initial instant.
If the amplitude with respect to each of the component forms
of oscillations does not change with the course of time, then thelr

energy, determined by formulas (2.16), remains constant.
t

The | total energy of the oscillations should always be equal to
the sum Of energies of the ocmponent motions, 1.e.,

Kl-K'+K.' (2.18)

As follows from expression (2.17), this is possible only under
the condition 1if

T m, iy =0, (2.19)
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This conditlon 1is called the condition of orthogonality of
tones of natural oscillations. A more strict derivation of this
condition will be given in § 2 of Chapter II.

With the calculation of any j-th tone, all preceding f.ones
to which indeim=0, 1, 2, ..., J - 1 corresponds, whould already

be calculated.

To fulfill the conditions of orthogonality with determination by

the method of successive approximations of the form of the j-th
J)
as

tone, let us represent the unknown form vy

i u;-l—l
m=0
where yim) are already defined forms of natural osclllations.

Constants Cm are determined from the condition of orthogonality
(2.19) by formulas:

2 -*vaf.)
[
C-fl—i-:‘-m.): . (2.21)
. ]
The value of the frequency of the j-th tone 1s calculated by
the formula

1

b= (2.22)
8z — E Cm
a=0

Knowing p2, one can determine the form of osclllatlions by the

expression (2.20).

4, Pecullarities of Calculation of Frequencies and
Forms of Natural Oscillations of a
Hinged Sealed Blade

All the above-mentlioned calculations referring to the rigld

sealed blade, can easlly be widespread for a blade with hinged sealiryg

in cthe shank.
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For this case the integral equation (2.4) takes the following
form:

o ARG AR TR A > 70 ARSI PO RIS

y_‘,-[ 5"’§Smyaﬂ+0.r] (2.23)

where the constant C0 is determined from the condition of equality to
zero of the sum of moments of all 1lnertial forces with respect to

the hinge. For the model with discrete distribution of parameters
this condition can be thus recorded

il

_“‘.‘.M.u.(r¥f.)-0- (2.24)

It is easy to note that thls condition colneides with the
condition of orthogonality to the form of oscillations which we will
conditionally call the form of zero tone oscillations. If this form
is standardizeé in accordance with condition (2.5), then it can be
recorded as

y’”ark-:::;. | (2.25)
Thus with calculation of the hinged sealed blade one should

consider that the form of 1ts zero tone 1s known beforehand and ‘is

assigned by formula (2.25), and with calculation of all subsequént

tones, starting from the first, it follcws to fulflll the condition

of orthogonality to the zero tone (2.24). It 1is possible to detkrmine

function uy by the same formulas which are given 1in No. 2. .

5. Calculation of Forms and Frequencles of Natural
Oscillations of the Blade as a Free Baam
in the whole cerles of cases it appears necessary to calculate

the frequency of joint oscillations of the blade and fuselage of the
helicopter. The rotor hub, which 1s the fastening point of the blade,
nan move iuiself together with the fuselage of the helicopter.
Calculatlons of such oscillations are very easy to fulfill if one
were to use the blade model constituting the free beam. Then in the
determination of joint oscillations of the rotor and fuselage, it
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is sufficient to calculate mass of fuselage my reduced to the rotor
(see Fig. 1.3) and to produce calculation of frequencies of natural
oscillations of the blade,

Calculation of the plade as a free beam can be carried out by
the formulas of No. 2, only all forms of the natural oscillations
should be additlionally orthogonalized to the form of the second zero
tone:

it (2.26) .

whiéhmiénequiiiiéﬁf to tﬁé»fulfillmehfﬂbf tﬁéméonditiaﬁwaf’
eguality to zero of the sum of all inertial forces effective with the
oscillations.

This method of calculation with small further improvements can
be used during calculations of forms and frequencies of natural
oscillations of the fuselage, which will be discussed in Chapter II.

§ 3., Approximate Method of Determination of
Freaquencles of Natural Oscillatlons
of the Blade in the Field of
Centrifugal Forces

1. Application of the Method of B. G. Galerkin
for Determination of Frequencles of
Natural Oscillations of the Blade
The method of B. G. Galerklin 1s very widely used to solve

different problems about elastic blade oscillations.

The 1dea of the B. G. Galerkin method and its application to the
solution cof differential equations is discussed sufficiently in
detail‘in literature (see for example, the reference book
Mashinostroyeniye ("Machine Building," Vol. 1, Book One, Mashgiz,
1947).

Here we will not repeat the derivations which can be found in

other sources, but will i1llustrate the application of this methed in
a number of simple examples.
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In No. 10, § 1, of this chapter the differential equation of
oscillations of the blade in the field of centrifugal forces was
deduced. If one were to substitute into it y in the form of (2.2),
then this equation will take the following form (the dash above y is

rejected here):

(E1yY—NyY —p*mg=0. (3.1)

Let us assume that the forms of natural oscillations of the blade
in the field of centrifugal forces do not differ from correspondiné
forms calculated for the case N = 0, Then, considering that the
forms of oscillations y(J) are known, we will substitute any one form
y(J) into equation (3.1), and, multiplying all ¢erms of the equation
by this form y J), we will integrate the obtained expressions along

the length of the blade.

After certaln transformations the obtained equation can be
represented in the form

. . R
.‘SEI ((ylrpdr-{-JN(uw)']*dr-p!_jmwdrgo. (3.2)
The integrals entering into this equation
. _—
Co= 5 El|@)Pdr, (3.3)
c.-jmwwr (3.4)

have fully defined physical meaning, namely:

C is the elastic potentlal energy stored by the blade when in
the process of flexural oscillations by the form of j-th tone it
attains extreme deviations from the position of equilibrium;? Cy is the
potential energy accumulated by the blade during its bend in the field
of centrifugal forces, Here, just as in expression (3.3), different

tones of natural oscillations can be examined.
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The full potential energy accumulated by the blade during its
bend in the fleld of centrif.:+> 7nrces can by formula y(J) be
recorded as

Ca-C.,-i-CN.. (3.5)

With flexural oscillations, when the blade passes through the
position of equilibrium, the speed of movement of its poitns attain
the largest values:

The kinetic energy of the blade can be defined by the formula
A
Kym=p? ;m[y")}’dr. (3.7)

In the process of free oscillatlons the potential energy
accumulated by the blade during its bend by form y(J) is turned into
kinet'c energy when the blade passes th2 position of equilibrium.
The equality of peak values of potential and kinetlc energy of the
blade is expressed by equation (3.2).

From equation (3.2) one- can determine the frequency of the j-th
tone of natural oscillations of the blade in the field of centrifugal
forces. This frequency is letermined by the formula

—~

Lot
o
oo
~.

P=rytep.

where paJ is the frequency of natural oscillations of the blade,
neglecting of centrifugal forces; RJ is the coefficlent considering tae
influence cf centrifugal forces.

Here
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(3.9)

(3.10)

In expression (3.10) Nm-l 1s the centrifugal force in the section
of blade at w = 1, '

Expression (3.9) for frequency of natural oscillations, neglect-
ing the centrifugal forces, can be obtalned if in this way one were
to use the B. G. Galerkin method to equation (2.3).

The expressions obtained here for frequencies of natural
oscillations of the blade in the field of centrifugal forces are
approximate. However, calculations show that in the whole series
of cases these expressions give fully satisfactory accuracy for
practical purposes. A more detalled appraisal of the accuracy of
results of these calculations will be glven in § 4,

2. Resonance Diagram of Blade Oscillations

It was already noted above that in the process of designing a
blade it 1s necessary to conduct calculations for the purpose of
eliminating possible resonances of frequencies of natural oscillations
of the blade with those harmonics of external forces which may
cause varying stresses considerable in magnitude. As was already
said, tpe harmonic components of aerodynamic forces having an effect
on the blade in flight are Jf considerable importance to harmonics
not higher than the eighth. Higher harmonics of aerodunamic forces
are so small in magnitude that they cannot de taken into account.

Frequencies of forced oscillations, which one should fear with
calculation of the blade, can be determined by the formula

vange, (3.11)
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where n = 1, 2, 3, ..., 8.

Equation (3.8) permits constructing the dependence of frequencies { ,
of natural oscillations of different tones from the angular velocity
of the rotor rotation. Plotted jointly on one graph, the dependences
(3.8) and (3.11) are usually called resonance diagram of the blade.
Figures 1.4 and 1.5 give resonance diagrams plotted for blades with
different parameters encountered in practice. These diagrams are
plotted 1in relative values. The frequencies of natural oscilletions
p and numbers of turns of the rotor are referred to a defined working
value of the number of turns ¥pes.
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Pig. 1.5. Resonance diagrams
of different types of blades
in the plane of rotation.

dpder of harmsoo uf exciting forocss

3. Selection of Blade Parameters for Exclusion of
Resonances with Oscillations in the
Flapping Plane

If one were to examine the resonance diagrams, constructed for
blades most diverse in design,then it turns out that they do not
greatly dif”er from each other. This distinction 1s most frequently
explained by the uifference in rigidities of the tlade to bending.
Rarer, and tc a lesser degree, it is caused by deviations in rass
characteristics of the blade. This circumstance is explained very
simpzyf The fact is that in designing the designer should follow
by a set of different requirements liniting the possibilities of
variation of tlade parseters and leading in the end to the creation
cf blades which are very ciase in their characteristics,

A wilde change in blade parameters is prevented, mainly, by
the followins conditions:




1. Spar depth 1s limitea by the profile of the blade and carnot
be considerably increased, since with an increase in relative
+hickness of the profile the 1lift-drag ra ., of the rotor worsens.
This circumstance limits the magnitude rigidity of the blade to
rending from above.

2. The sag of the blade under the impact of 1ts welght should
not be very great, since this causes difficulty in the layout of the
helicopter. PFlexural stresses in the longeron, appearing from
intrinsic weight, also shnruld nnt 2xceed the known values selected
from conditions of strength, taking into account possible dynamic
overloads. These considerations limit the possibilities of lowering
the biade rigldity.

2. The welght of the blade appears concluded in even closer
borders. A tendency to the increase of loading factor of the
helicopter forces the designer to give a maximum weight reduction
of the blade. But this leads to an increase in varying stresses from
tending, which act in the blade in flight, and, consequently, to a
lowering cof service 1ife. Therefore, usually the blade weight
decreases as long as the longercn endures increasing varying stiresses.
AS a result the blade welght is rigidly connected with dimensluns
of the rotor and strength characteristics of the material Irom which
its longercn 1s prepared.

As a result, resonance diagrams cf different blades are changed
in practice within limits wnich are limited on the one hand by the
possibility of creatlion of a very rigid tlade, and on the cutiher, uy
the possibility of providing satisfactory service ilfe of “lades
having small rigldity.

At the assigned total welght of design the maximum rigid biade
¢s obtained if the material of i3 lcngeron (s Cisposed on the
contour of the profile, L{.e., to inscribe the longeron into the
profiie of the btlade. WwWith thiz a grea: percent of the biade weight
can be incloned in its force eiczent — the longerorn. Cuch blades
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are usually the most profitable from the point of view of the value of
effective stresses, but it 1s difficult to make them. Simpler in
production were blades with a free form of sections of the longeron
(for example, in the form of a pipe) not inscribed into profile

of the blade. Such blades possess small bending strength and give the
least successful resonance dlagram during oscillations in the flapping

plane.

According to dynamic characteristics in the plane of stroke, *t
is possible to distinguish the following types of blades:

Blades with iow rigidity in the plane of stroke. Such blades
are usually obtained in a construction based on a tubular steel
longeron with a frame ncnoperating during bending. On Pig. 1.4 the
dotted line denotes the resonance diagram for a blade whose rigidity
in the flapping plane is on the lower 1limit rigidities encounterad
in practice. With such parameters the blade falls into resonance of
the second tone with the 4th harmonic and third tone with the 6th
harmonic of exciting forces, which is why in it there appear
considerable stresses with these frequencles (see also Fig. 1.66)}.
These resonances appear especially sharply in conditions of low
speeds, where for blades of this type tne stresses appear even higher
than at the maximum speed (Fig. 1.64). Therefore, their service life,
as a rule, is limited by stay in conditions of low speeds.

Blades with low rigldity are usually a fallure in strength and
service life, but are often used, since their manufacture proves to
te the simplest.

Blades with average rigidity in the flapping plane. With an
increase in rigidity the frequencies of natural oscillations of the

blade depart from these resonances. In this case it is possible to
develop a ful?" successful tlade. Figure 1.4 shows the resonance
diagram of such a blade by a solid line. As follows from this diagram,
the second tone of oscillations of such a dblade stilli did not approach
the 5th harmonic, and the third tone appeared somewhere bdbe'ween the
7th and 8th harmonics. Constructively these are usually blades with




iongeron inscrited into the

2 contour (or close to this form)
The lougeron can be both steuvl and Duralumin,

srofiie.

Without an 1ncrease in weight of the blade 1t is impossible tc
Moreover an insignificant increase of

; inc¢rease rigidity more.
: rigidity can leaa tu cesonance of second tone with the 5th harmeric

Therefore the following in order of increase in
weighted blades with greatly increased rigidity.

of external forces.
riglaity can be only

Welphted blades wltn great rigldity in the flapping plane. 1If
one were to lncrease the weight of the blade, putting this weight into
the construction of the longeron, then 1t is possible to increase

Its rigidity so much that the frequency of the second tone will
In thils case the resonance

In the

appear hlgher than the 5th harmonlc.
diagram shown in Fig. 1.4 by a dot-dashed 1line is posgible.
) biade longeron with such a resonar.ce diagram even smaller varying

g stresses wlill occur, but the blades appear somewhat heavier as
However, for small

¥ compared to blades of average rigidity.
nelicopters for which the relati.e welght of the rotor is small, such

loading of blades 1is possible.

It is necesszary to note that with an appralsal of the dynamic
characteristics of different biades in the flapping plane there was

absolutely not taken into account the location of the first tone
Usually the first tone lies between

of osclilations of the blade.
the 2nd and 3rd harmonics and 1t is possible to change its locatilon :
considérably only in designs distinguished by some pecullarities, :
for example, for jet rotors with engines on the ends of blades or

for rotors with nonhinged fitting of the blades., The 1insignificant
displacement of frequency of natural cscillations of the first tone,
observed for standard rotors, as a rule, essentially does not have
an ef'fect on the magnituds of effective varylng stresses, ;

R

L, Selection of Blade Parameters for Elimination of ]
Resonances in the Plane of Rotation u

in the designing of a blade it appears necessary to ensure
the absence of resonances in the plane of the greatest rigidity of
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the blade, which can approximately'be considered as coinciding with
the plane of rotor rotation. The plane of the greatest rigidity of
the blade usually coincldes with the plane of the chords. Therefore,
rigidity characteristics of the blade in this piane can be changed

in wider 1limits than in the flapping piane. Starting from the round
pipe, the section of the longercn can be increased up to dimensions
occupying practically the whole profile from the leading to trailing
edge. However, there are definite limitations in this plane. Thus
the 1increase in width of the longeron chordwise certalnly leads to a
shift in the centering of the blade tc the tralling edge, which 1is
usually impermissible from the polnt of view of requirements
presented for elimination of flutter. Furthermore, the increase

in width of the longeron can be accompanled by an increase 1in varying
stresses in it. With the lowering of rigidity of the longeron by
means of decreasing of its width the torsional rigidity of the blade
simultaneously drops. This circumstance is one of factors preventing
development of blades with very low rigldity in the plane of rotation.

B AR,

With an estimate of resonance characteristics in the plane of
rotation, one should examine, mainly, the first tone and in separate
cases also the second tone of osclllations of the blade. The
exclitation of oscillations according to higher tones appears weak.

According to their dynamic characteristics in the plane of the
greatest rigidity the blades can be divided into the fo;}owing
types:

3lades with lowest possible rigidity in the plane of rotation.
This type of blade usually includes blades with a tubular longeron
and a frame nonopesating durlng bending. Frequencies of natural
osclllations of this type of blades in the plane of rotation appear
to be approximately the same as those in the plane of thrust or even
somewhat lower due to the fact that the value of coefficient X, [sez
formula (3.8)] in the examined plane 1s somewhat lower (this will
still be discussed in § 4, No. 4). The first tone of oscillations
in this case appears to be, as a rule, nevertheless somewhat higher

A}
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tuan the 2nd harmoric of external forces, and serious troubles from

this resonance usually do not occur. It is a worse matter with the
second tone. 1t can fall into the resonance with the Uth harmonic

of external forces. This usually leads to considerable increase in
stresses from this frequency in the plane of rotation. On Fig. 1.5
the das..ed line shows the resonance diagram for a blade whose

rigidity in the plane of rotation lies on the lower border of
rigidities encountered in practice. This blade is close to the
resonance of the second tone with the 4th harmonic of external forces.

Blades with low rigidity in the plane of rotatlion. If the
rigidity of the blade 1n the plane of rotation is somewhat increased

in such a way that its first tone remains between the 2nd and 3rd
harmonics, and the second tone emerges from resonance with the 4th
harmoriic, then there will be obtalned a blade fully satisfactory with
respect to stresses in the plane of rotation. It 1s necessary to
note that with an increase In rigidity one should fear resonance of
the second tone with the 5th harmonic to the number of turns of the
rotor. Practice shows that witn this resonance stresses in the plane
of rotation are rather greatly increased, which can even have an
effect on their service life. The resonance diagram of blades with
low rigidity in the plane of rotation, for which the second tone

is located between the 5th and 6th harmonics, is shown on Fig.

1.5 by solld 1lines.

Blades with low rigldlty in the plane of rotatlon are used
wildely in practice and, as a rule, cause no troubles connected with
oscillations in this plane. However, frequently according to their
rigldity characteristics in the flappling plane they approximate blades
with low rigidity in the flapping plane which are distingulshed by
increased stresses at low speeds. With an increase in rigidity of
the blade in the flapping plane rigidity in the plane of
rotation is frequently simultaneously increased. This circumstance
forces us to use the blade with even higher rigidlity in the plane of
rotation.




Blades with average and high rigidity in the plane of rotation.
The blades with average rigidity in the plane of rotation usually
include blades whose first tone lies between the 3rd and 4th
harmonics of external forces, and the second tone emerges into the
reglon of frequencies with so weak an excitation that 1t is of little
interest to us. On Fig. 1.5 the frequency of the first tone of
these blades is shown by a double 1line.

Blades with high rigidity in the plane of rotation include
blades whose frequency of the first tone lies higher than the lUth
harmonic of external forces (dot-dashed line on Fig. 1.5).

Blades with average and high rigidity in the plane of rotation
can be carried out with fully moderate stresses. However,
frequently with the use of such blades there are difficultles connected
with the drop 1n frequerncles of the blade due to the elasticity of
the sealing of the rotor on the fuselage. This circumstance should
certalnly be conslidered in the designing of blades of this type.
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§ 4. Calculation of Forms and Frequencies of Natural
Oscillations of the Blade in the Field
of Centrifugal Forces

1. Purposes and Protlems cf Calculation

Above in § 1, No. 8, it was already noted that the necessity
in the determination of forms and frequencies of natural oscillations
~f the blade appears with the solution of two types of technical
problems presenting different requirements to the method of
calculation,

The first type includes protlems in which the calculation of
forms and frequencies is produced for selection of parameters of
the blade, which exclude the possibility of the appearance of
resonances. Calculation in this case is finished by construction
of a resonance diagram, and forms of natural oscillations play the
role of only intermediate results and subsequently are not used.
Therefore, in widespread calculations of this type the form of
ratural cscillations of the blade in the fileld of centrifugal forces
ig considered coinciding with the form of an irrotational blade.
The influence of centrifugal forces is considered only ir values of
frequencies which are calculated from power ratios determined by
equation (3.8). Such a rather simple method of calculation fully
satlsfies purposes of problems of this type.

The second type pertains to problems in which forms and fre-
quency of natural oscillations are used for calculation of forced
osclllations with the determination of varying stresses effective
in the blade design. To obtain results in thls case there is wmuch
importance in calculation of those peculiarities which introauce
tensile centrifugal forces into the form of oscillations.

Ir. this paragraph it will be shown that centrifugal forces
considerably change the form of natural oscillations of the bladc,
An especially great influence of centrifugal forces appears in the
form of distribution of the curvature of the elastic line alcng the
length of the blade and to a lesser degree in the form of movements




of the blade's elements. The change in form of distribution of the
curvature naturally leads to the redistribution of flexural stresses
along the blade, The influence of centrifugel forces on the
distribution of stresses along the length of the blade has the
greatest effect in places of a sharp drop in flexural rigidity and
bracing of the concentrated load,

It 1s necessary to note that in the determinat!on of forms of
natural oscillations, taking into account centrifugal forces,
definite difficulties are encountered which should be examined in
greater detall,

2. Limits of Applicability of Methods of Calculation
Reduced to the Solution of the Integral
Equation Blade Vibrations

To calculate free oscillations of *the blade in the fleld -f
centrifugal forces it would be very convenient to use the same mnothod
as is used for the blade of an irrotational rotor. However, it
appears that the method of successive approximations (see § 2)
occurring in the solution of integral equation (2.1) cannot be used
in all cases for the solution of equation (3.1), which describes
natural oscillations of the blade in the field of centrifugal forces.

In § 2, No. 1, it was shown that with fourfold integration e¢f
equation (2.1) the problem is reduced to the solution of integral
equation (2.4). This integral equation can be recorded in somewha®

different form:
!

0-7‘55‘1” ' (4.1)

where M-.-}yﬂy‘l‘ is the bending moment from inertial forces
’

appearing with oscillations of the blade with a frequency p = 1,

Analogously with integration of equation (3.1) the problem is
reduced to the solution of an equation of the following form:

s
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M[I c iz the vendirnp momen: of centritupal forces at the
L]
srovular velocity of rotor rotation » = 1,

S &

Mu-fmyl"dr—ijdr; (4.4)
v-}. (4.5)

If the method of successive approximations applied to equation
(4.1) gives good convergence in all cases pertaining to design of
the rotors, then in the application to equation (4.3) it converges
.nly in a certain region of values of the parameter V.
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Fig. 1.6. Resonance diagram of nellicopter blede in

the thrust plane plotted b, *he method of successive
approximations.
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Figure 1.6 glves & resonance diagram for the standard blade
of the helicopter with hinged fitting to the hub. Plotted along
the axis of the abscissas on this graph are numbers of turns of the
rotor and along the axis of the ordinates, the frequency of natural
oscillations.

Values of frequencies of natural oscillations, obtained as a
result of solution of equation (4.3) by the method of successive
approximations, are noted on Fig. 1.6 by dots. Opposite every dot
is the corresponding value of parameter ¥ and the quantity or
approximations s necessary for achievcment of the necessary accuracy
equal to 0,0C1, From the graph 1t 1s clear ihal al certain 7y the
value s starts rapidly to be increased, and the method of successive
approximations ceases to converge,

From Fig. 1.6 it follows that in the range of operating nunbers
of revolutions for blades of helicopters such a method permits
determining the frequencies of natural oscillations of third and
higher tones and only in the case when alil tones of oscillations
are determined for a constant value of parameter 7y, which corresponds
only approximately to conditic~s of the stated physical problem,

IT in the process of successive approximations parameter ¥y is refined
under the assigned value of angular velocity w, then the method

will converge only in the range of numbers of revolutions considerably
smalier than the operating ones.

This circumstance creates the need for the application of other
methods which enable obtaining a reliable result in the whole r:nge
of numbers of rotor revolutions.

3, Possible Methods of the Calculation of Free
Oscillations of the Blade in the Field
of Centrifugal Forces
To calculate frequencies and forms of natural oscillations
in the field of centrifugal forces different methods of calculation
can be used. Of the works published concerning this question, it
is possible to indicate works [4], [8], and [10]. Of forelgn works

L9




5, and [34] are well-known, .n works [35) and {34] an accourn.
.o given of & very bulky methoi, whirh gives not very high accurea.y
in the final results, in spite of the fact that the calculation
should be conducted with an accuracy of not less than 10-12 decimal
nlaces.

Here there will be discussed the method which from our point
of view 1s the most convenient for calculation of frequencies of
r.atural oscillations of the blade in the field of centrifugal forces.
It is based on the use of the method of three moments, which wss
used by T. Morris and W. Tye [32] for calculation of flexural stresses
in a blade stretched by centrifug-l “nrces. The method of T. Morris
and W. Tye is also discussed in work [12].

he method of three moments, used to calculate stretched
centrifugal forces of the¢ blade, has a number of considerable
aivantages. Among them the maln one is the fact that it does not
require high accuracy in the process of calculation. Calculations
can be produced even on the standard slide rule.

The method of three moments for the calculatlion of natural
frequencies has been used for a long time. It 1s prngrammed on the
computers Strela and M-20., Calculation on the machine Strela of

- the first eight tones of natural blade vibrations only .akes about

three minutes. There is made a very large number of the most
diverse calculations., Thelr results indicate the considercble
conveniences and great reliability of this method.

It is necessary to note that with a program of such calculat.icrn
there is no need to turn to any simplified methods of cailculation
as, for example, those which were discussed in § 3.

4. Method of Three Moments for tue Calculaticn of Forms
and Frequencies of Natural Blade Vibrations
in the Field of Centrifugal Forces
To derive the calculation formulas we use the beam model of

the blade with concerntrated loads, which was already used in § 2,
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No. 2., Just as earlier, the blade flexural rigidity will be
represented in the form of a step curve in such a way that it
remains constant for the extent of each section (see Fig. 1.3).
The centrifugal force will be considered applied only to loads.
Therefore, for the extent of each section its magnitude will not
be changed. We will also consider that the centrifugal force is
absorbed by a special bracing of zero load, which nonetheless can
move freely along the vertical.

It is obvious that such an idealized calculation diagram —-an
be reliably used if the number of sections z is surficiently les-ge.
cually the blade is divided into not less than 25-30 sections.

The method subsequently propcsed consists in the determinaiicn
of frequencies and forms of natural osqillations of su.h an idegllzed
diagram without any additional assumptions.

Let us consider two adjacent sections of the blade deflected
under the action of inertial forces from the plane of rotaticn .f
the rotor (Fig. 1.7). As usual, we will examine only small
deflections.

Fig. 1.7. Diagram
of forces acting
on two adjacent
blade elements.

The equation of equilibrium of each of the sections under the
action of forces extcrnal with respect to the given section can
be recorided in the form of an equality to zero of the sum of moments
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i tnese forces one should include both the snear force @ and ber 1.
woment M effective in the section,

Then the sum of moments of forces acting on the blade section
5-1 with reference to a point O can be recorded as

My —My—N;, (y:—yps) + Quin=0. (4.6)
The sum of moments of forces acting on sections 1-2 with

refarence to point 1 is:

My—M—N s lys—y) +Qual13=0. (+.7)

Qu~= -'2..0;53
3
Q= ""}::'c;a-

Dividing equations (4.6) and (4.7) respectively by 1,,N,,
2nd 112N12 and adding them, we obtain the following equation of

equilibrium:
baot et b Mot Myt w1 02w (4.8)

Deslgnations introduced here and also in equations (4.12),
(4.13), (4.14), and (%.15), are copled below (see expressions
4.15-k . 25).

Analogous to eguation (4.8) eguations of equilibrium and for
all otner secticns of the blade csan be written,

Examining as defore only smell movements of elements cf the
biade, let us Jdetermine the deformation of section 1-2. The eguatiun
of deformeticns of element 1-2 can be recorded as usual [see eguuticn
(2.1}]

(Bl at/T N T =0.

The inertis)! term is sbsent here, inssmuch as inertisl forces
ar- applied only on borders of the section. Considering that on

(%)}
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the length of the section EI = const and N = const, and also that
EIy" = M, we will obtain

&
%2 —MM=0, \r.9)
wliere

Mo
M= el

Solution of the equation (4.9) can be racorded in terms <
hyperbolic functions in the following way:

My A shypys+ B ch . (4.10)

Coefficients A and B are found from the following boundary
conditions:

— for x =0, M, = M; /
- for x = 112, Mx = Mz.
wWhence
A S _ M
she, the,
B=M,,

where a, = “1112‘
Substituting these values into equation (4.10), we get

“ %
My El gy = .f:'.-;-:.- shp, x4 M, chp,x. (L.11)

Integrating eaquation (4.11) twice, assuming cthat for x =
y! = Byr ¥ =¥y and for x = 112 y! = Bor ¥ = ¥y, We obtain etthrer
. Wi —n)=dMy+e,My+h.
. r .
Q== — M~ &, M 41y ]

The equaticn of deformations for the section C-1 can te
recorded by analcgy with the second equatjon (4.12):

S (r—) = — oM —doMy + . (4.13)




Changing in equation (4..., «.. signs to the opposite and
adding with the first eouation of (4.12), we obtain:

Nﬁwﬂm-ﬂnﬂnm (4.15)

Substituting into the equation of equilibrium of elements (4.8)
the left side expressed in terms of bending moments from equation
(4.14), we will obtain the following equation:

Mt gt N 2 (4.15)

Repeating the made calculaticns for other sections of the blade,
we will obtain system copied below of differential equations relative
to unknown functlions of time vy and Mi‘

This system, recorded in the form of tables, consists of two
families of equations (4.16) and (4.17), each of which includes the
z + 1 equation. A

Any of the equations occupying one line in Table 1.1 constitutes
a polynomial whose coefficients are copied in the squares of the
table. Al) components of the polynomial are products of a certain
coefficient determined by the formulas (4.18), (4.21), (4.23), and
(4.24)-(4.27) on unknown functions M; and y; or on a second time
derivative Yy

In the squares of Table 1.1 there are written only coefficients
at these functions, and the very functlcon entering simultaneously
into several equations are cavrried out vertically in a special line
placed at the top of the tables.

Included in the described system of equations are also equations
of type (4.12), which pertain only to the shank and end section of
the blade and contain boundary values 80 and Bz. These equations

are necessary for calculation of boundary conditions of the problem.

The obtaineu system of equaticns has the following form:
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hyo=0.

Lo™==Cy—Ny;
L1==C;— Ry, ‘ (4.25)

&:>=C— R,

N

4; In fellowing expressions (4.26) and (4.27) m; 1s the mass of
i the i-th load.

‘l-"é‘.‘3‘ . (4.26)
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. 1 1y, ,
fu m‘(”g-n Nb.ul)' (4.27)

. ‘ 1
byt s =M, (‘ﬁ‘ -1 ) .

~2s=1 Niaps
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{ Here the subscript k denotes the number of the line in Table 1.1.

To solve the system of equations recorded in Table 1.1, it is
\ convenient to use the method of successive approximations. 1In
% reference to this system of equations 1t consists in the following.
Let us present the time functions yi(t), Mi(t), and Bi(t) entering
into the system (4.16) and (4.17) in the following form:

% 41 = g1 pt;
M, (6)=M,sin pt;
B () =8 sin pt,

56




S

ey« Y A LK AR BT T e AR g - e s I IR e ]

- — -

where letters Yyi» Mi’ and 81 denote now only peak values of these
functions,

Then, considering that Ji(f)=—p'sinpt, and cancelling by sin pt,
we will obtain a system of algebraic equations analogous to the system
of (4.16) and (4.17). Only in the right sides of the family cof
equations analogous (4.16) values p2 will appear.

The method of successive approximations will be started from
the fact that as the zero approximetion we wiil assign a certain

function Yy - The second subscript here denotes the number of the
0]

approximation. The function ¥y taken as the zero approximation
0

should be standardized in any form, for example,

=l (4.28)

If function Yy is known, then correct to a constant factor

p2 inertial forces entering into the right side of equations of
(4.16) can be determined.

Let us assume temporarily that p2 = 1, Then from equations
(4.16) one can determine values of bending moments Mi and the angle
of rotation of the blade in the butt BO. After which according to
already known values Mi and 8, from equations (4.17) movements of
the blade axis can be determined at deformations which for the cace

p2 = 1 we will designate by uy in such a way that

After determination of movements uy the frequency of natural
oscillations can be determined. Its value 1s obtained on the basis
of expressions (4.28) and (4.29) in the following way:

pebiol (5 =0)

After which in accordance with expression (4.29) there is
determined and refined after the first approximation the function

"l.-’».l.' (4.31)
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Then the whole prccess is repeated until the required accuracy
will be attained. S
‘ !

The method of successive approximations used permits that the
determined form ¥4 converges to the form of lowest tone of natural

oscillations of the blade,

In the determination of subsequent tones the condition of
orthogonality should be observed., Operations resulting from obser-
vance of the condition of orthogonality remain the same as those
for the blade of an irrotational rotor (see No. 3 of § 2).

The equations copied above in an equal degree apply for the
calculation of frequencles of natural oscillations both in the
flapping plane and in the plane of the rotor rotation. ©Only with
calculation in the plane of rotation obtained should the values of
frequencies obtained above be corrected by the formula
(4.32)

”m- "ll amass ‘o

where » is the angular velocity of rotation of the rotor.

~

The method of calculation of forms of natural oscillations does
not change from that in which plane the calculation 1is produced.

} Let us consider more specific2lly certain operations in the
: fulfillment of one approximation.

: 5. Determination of Bending Moments
E According to Kaown Forces

Let us start from the determination of bending moments according
to known inertial forces eatering into the right side of equation
(4.16), which we determine in each approximation by assigning in

the beginning the value p2 =1,

Having assigned some form of osclllataons Yy, We can determine
coefficients of the right side of equations (4.16), which here we

will designate by Fk'

1
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Coefficlents Fk can be defined by fo.mulas

- |
Pyt 3 tam (4.33)
I=Be} :
or better
r,.._Q_u_ Qpn (4.24)
Nosnr '’

8
where Qp—a.n-zaw,.
»

Then the system of equations (4.16) can be copied in the
following form (Table 1.2):

Table 1.2.
Bo | My | Mg} M Joce one iMy  1M3

3 170
A KB
A
O R Proe B o (%.35)
h{'ﬂ [ AL
N33} 950 fR3-
- 31} Is

For a solution to this system it is necessary to know two more
additional equations considering the boundary conditions. These
equations can be the following:

— with rigid sealing of shank of the hlade
f=0;

~ with rigid sealing of the blade tip
h=0.

With hinged fastening of the blade tips or with completel,
free ends MO = 0 and Mz = 0,

Subsequently we will examine only the two most predominent
cases, when the blade tip 1s free (M_ = 0), and in the shank there

is either a hinged holder (MO = 0) or rigid sealing (50 = 0).
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Let us conslder in the bexinning the first case when the blade
is hinged fastened, i.e., MO = 0, In this case to determine the
bending moments we use only those equations which in system (4.35)
are outlined by a heavy line, after which from the first equation
the value of the angle of rotation of the blade in the hinge BO
can be determined. From the last equation of system (4.35) it would
have been possible to determine the value Bz. However, we will not
need this value for further solution. The equation itself is used

only in a case rarely encountered in practice when Bz =0,

With the solution of system (4.35) there can be selected the
unsuccessful means leading to the appearance in the solution process
of small differences of great magnitudes, which in certain cases
can absolutely spoll the result even with the use of a machine
provide an accuracy up to nine decimal places.

Here we propose repeatedly a proven means which permits producing
calculation even on the common slide rule.

Let us divide the first equation of the system {4.35), written
in reference to hinged bracing of the blade, by &y and the second
equation by hlz

M.+itn,--3; (4.36)
e
Mot Mt M=, (4.37)

Subtracting equation (4.36) from equation (4.37) and introducing
the following designations

—h_N.
6= #'
-t

5 o'

r-'--*.
%

we will ottain an equation analcgous to equation (4,3G):

[ ” (i€
My4 4 Myem 3, $2
e " n
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In combination with the following equation of system (4.._;
this equation will form a system of two equations analogous to
equations (4.36) and (4.37). Repeating the described operaticns i
certain number of times, we will finally obtain one equation c¢{ the
following form:

Myt (:.7)
L

After determination of the moment M, ;, moment M, , is
determined, etc., up to moment Ml‘ In other words, moment M1 i
determined every time when moment M1+1 is already determined. The
formula for determination of moment M1 can be recorded on the basis
of equations (4.36) and (4.38) in the following way:

5 ‘
M‘-?:—% M.‘y (‘6 .“0)

After determination of bending moments the angle of rotatiun
of the blade in the butt hinge 80 is determined by the formula

*".—“g. (l‘ .41)

The second stage of the method of successive approximatioas
consists in the determination of deformations of the blade by the
already known values of bending moments Mi and the angle of rotation
of the blade in the hinge 60.

6. Determination of Movements by the
Known Bending Moments
Blade movements with its deformations, which here in accordance
with that said above we designate uy, can be determined from svstem
(4.17). However, it 1s possible tc show that equations of systenm
(+.17) are insufficient for determination of all values of u,.

Indeed, to determine the positinons of the curve with a kneosn
distribution cf curvature along the length, which is assigned %
values Mi’ and with a known value of the angle cf rotation at ore
peint 50, one more additional condition superimposed on values of

movements 1s necessary. The 1ast equation of system (4.17), including

the value cf tne angle of rotation irn the other point I is actual.y
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identical to the first equation and is written by us especially by
analogy with system (4.16).

——

.

Such an additional condition is either the condition
=0, (4.42)
if in the shank of the blade there is a holder, or the condition |

g
3, mz, =0, (4.43)

L

if the blade is examined as free on two sides of the beam. Condition

(4.43) coincides with the expression emanating from the condition of
orthogonality with a zero tone of oscillatlons

YO =lmegpst.
Having calculated the coefficients which include the already
defined values Mi and Bo and leaving only the first of the two
identity equations, we will obtain the following system of equations,

which in combinatipn with equations (4.42) and (4.43) permits
determining all values of u, (see Table 1.3).

Table 1.3.
Up uy u; Uy |ooe | Up, | Ug
Uy b =l Dy
." 8y b! =} U
h | e2] & =| 2, (4.44)
| a5 | & ={ Dy
o600 joo e o280 20 N N ]
bpz| Bp-r| dz-s | =] Does
1 61| 87 |=| 24
Here we introduced the following designations
DymdiaiMeoy+eMi+diMus, (4.45)
where in this formula for 1 = -1 instead of the value M_l one should ;,

put By, and the value d_y snould pe considered cqual to unity -

(a1 = 1).
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Under condition (4.42) solution to the system (4.4%) 1s reduced
to the determination of values uy from simple recurrence formulas
of the form

'c"‘.'",_"" Dyt = byyy g~ 8y ilyy)- (4.46)

In solving system (4.44) with condition (4.43) value u, car. e
represented as

8o=sg+ Uy, (4.47)

where ﬁb = 0, and Gi can be determined by formulas (4.46), atter
which the value U, can be defined by formula

)&-ﬁi
- (4.48)
;q-a
Further course of successive approximations has already been
mentioned above.

l.-

In the examined case of hiuged fitting of the blade in the
butt, the method of successive approximations will lead in the begin-
ning to the determination of the form of zero tone, which with
coincidence of the blade hinge with the axis of rotation of the
rotor will coincide with a straight line. It is natural that ir
this special case the calculation should be started directly from
determination of the first tone, conducting in each approximation
orthogonalization to the zero tone, considering it colinciding with
a straight line.

Most frequently the shank hinge of the blade of a helicopter
is ascribed from the axis of rotation of the rotor on a certain
value T which can comprise approximately *-10% of the radius
of the blade. The preserce of this distance leads to the fact rhut
the form of the zero tcne of the hinged suspended blade can somewhat
differ from a straight line, and the frequency of natural
oscillations becomes noticeably different from the value equal tc

. the number cf revolutions of the rctor, Pelox (see Fig. 1.1&) for
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1llustration of this effect w. give a graph of the form of zero tonea

with very greatly increased distance from the axis of rotor rotation -
to the butt hinge. (J

7. Case of a Blade Rigidly Fastened in the Shank

Calculation of forms of natural oscillations for a blade rigidly

sealed in the shank differs very little from the case of the hinged
fitting examined above,

The first stage of calculation involving the determination of
bending nmoments Mi is conducted in the manner as was described
atove, but here the system circled in (4.35) by a line is solved,
This system includes one equation more, in which in virtue of
boundary conditions it is assumed B = O,

The same condition is used and in the solution of system
(4.44), in which the coefficient D, is calculated by the formula

Do=coMo+ doM;.

8, Possible Simplifications in the Calculation
of Coefficients
Let us stilll note that in those cases when the bladc¢ is divided
into quite a large number of sectlons in such a way that the value
of coefficients a; in formulas (4.20) is less than 0.05-0.08.
formulaes (4.21) and (4.22) can be simplified by replacing the
hyperbolic functions entering into them by first terms of their
expansion 1in series,

Actually, let us assume in formulas (4.21) and (4.22) that

shomat S+t oot 2

o2 @
tha=a 3-+

‘ig""--.:::a—'-

and let us disregard values a2 as compared to unity. Then
ccefficients di and e, . can be calculated by the approximate formulas
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81, 14

11141
P =2d,.
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These simplifications somewhat decrease the laboriousness of
calculation, which 1s inportant in its manual falfillment.

g. Certain Results of the Calculation of Forms
and Frequencies of Natural Oscillations
of the Blade
Here we separate two questions, which represent from our
point of vliew the greatest interest.

The first question will touch upon those more precise definitions
which are introduced by calculation of frequencies and forms of
natural oscillations cf the blade in the field of centrifugai Inrces
in final results as compared to the approximation of calculation
expounded in § 3. Then we will discuss the cons.deration of caces
of the appearance of sharp bends of the blade under the impact of
local pecuiiarities in the distribution of rigidity and mass paran-
eters along the length of the blade. The appearance of these bends
is characteristic for beams stretched by centrifugal forces, and

without extension centrifugal forces are not observed.

Let us start with the first question. In No. 1 of § 3 we slresady
not:d that the approximation method of calculation of frequencies
of natural oscillations of blades in the field of centrifugal forces,
as .a basis of which there is assumed the assumption about the fart
that the form of natural oscillations in the presence and absence

of centrifugal forces are not distinguished, gives quite satisfaciory
results in values of frequencles,

For confirmation of this position let us give values of fre-
quencies of natural oscillations of the first three tones of blades
hinged suspended and rigidly sesled in the shank of one of the>heli-
copters in the field of centrifugsl forces. Values of frequenciles
calculated by the approximate power method (see § 3) are placed in
the second column of Table 1.4. In the third column there are
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Tabie L oe'toe

Tone of oscillaticr Frequency of natural
oscillations

method of | exact
apprcxi- method

mation
Blade hingcd suspenuded
in the shank
FirSt.eeeeeseesoennss 405.3 4ou .3
STE1¢T 0} o Yo I 708.5 705.5

Third...ceevuveeennen 1069.7 106G.0

Blade rigidly sealed in

the butt

FirSt....---......,.. 212.1 19,‘&17 hd
SeCOnd...l...l..l..l‘. 463‘7 1;61'9
Third.e.eeseeeneeeess 821.5 817.5

placed for comparison accurate values of frequencies calculated
according to the method discussed in this paragraph.

A comparison of values of frequencies given in Table 1.4 shows
that with a hinged suspension of the blade the distinction in their
values is very insignificant., With rigid sealing it is somewnat
more but also smali. Therefore, as was already noted above, for
calculations whose purpose is exclusion of the peossibility of appear-
ance of resonances, the method gives fully satisfactory results,

The influence of centrifugal forces has a greater effect on
forms of natural oscillations and, especially, on the distribution
f bending moments and curvature of elastic line along the length

of the blade.

Figure 1.8 shows hinged forms of the first five tones (excluding
the zero tone) for the same blade as in Table 1.4, and on Fig. 1.9
distributior of bending moments corresponding to these forms is

given. Soliad lines on Figs. 1.7 and 1.9 (Jjust as on Figs. 1.10,

£o
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Fig. 1.8. Forms of first five tones of
the blade in the field of ccatrifugal
forces and at n = 0O,

1.11, and 1.12) indicate the form of natural oscillations in the

field of centrifugal forces and dashed lilnes, the same form for an
irrotational blade,

G - et B i Dy et

Figure 1.10 gives the forr cf naturel oscillations and bending

moments corresponding to them for the first two tones of the blade
sealed in the shank,

s
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Fig. 1.9. Distribu-~
tion of bending moments:
along the blade during
oscillations in forms
of the first five
tones in the field

of centrifugal forces
and at n = O,

As can be seen from all these graphs, calculatioa of centrifugal
forces in certain sections of %ne blade has a very noticeable

influence on the form of natural oscillations, which especially

greatly appears in diagrams of bending moments and, consequently,

also in the distribuiion of fiexural stresses along the length of the

oscillations.

(Y

blade. The greater the inflicone ., ftac lower the tone of natural

e
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Distribution of benuiny; coments along the blade length with
its ocecillations in the field of centrifugal forces 1is characterized
by an increase in bending moments on certain sections of the blade
owing to their decrease in adjacent sections. Such a local increase
in bending moments will be called the concentration of bending
moments, The appearance of concentrations of bending moments is
connected with the presence in the design of the blade of large
concentrated loads and sharp drcps in bend rigidity.

Concentrations of bending moments lead to the appearance on
a series of sections of the blade of increased flexural stresses,
which is caused by sharp bends in the blade on these sections,

This circumstance is of considerable interest for practice
and therefore should be examined in more detail.

The character of blade oscillations in the field of centrifugal
forces to a great degree is determined by the relationship between
values of elastic and centrifugal forces. If the bending rigidity
of the blade is sufficiently great (as this frequently happens,
especially in the plane of rotation of the rotor), and the centrifugal
forces are insignificant (small rotor revolutions), then the form of
oscillations differs little from the form of oscillations of an
irrotational blade,

If, however, conversely, the bending rigidity of the blade is
small, and centrifugal forces are considerable, then the form of
deformations of the blade is determined basically by inertial and
centrifugal forces and depends little on elastic properties of the
blade. In this case the form of deformations of the blade with
oscillations differs very slightly from the form of deformations of
an absolutely flexible heavy line stretched by centrifugal forces.,
Such a position, as a rule, is observed with oscillations in the
thrust plane for blades of contemporary hellcopters.

Quantitatively the relationship between elastlc and centrifuga.
forces can be estimated with the help of cocfflclent o, which i3
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tne ratio of the elastic potential energy to potential energy

accumulated by the blade due to bending in the field of centrifugg]
forces:

ag-sﬂ-‘
L4

Values Cp; and Cy are depicted in formulas (3.3) and (3.4).

For a > 1 the influence of elastic properties of the blade {is :
greater than the influences of centrifugal forces., For a < ™ .0z ?

CEEE

opposite picture is observad. 3

Table 1.5,

Tone of Coefficient a with

oscilla-

tions deforma- |deforma-
tion in in the
the flap-|plane of
ping rotation
plane

First....n 00083 202

Second.... 0.332 3.7

Third..... 0.629 7.7

Fourth,... 1.116 -

Table 1.5 gives values of coefficients a for a hinged suspended
blade whose forms of oscillations are shown on Figs. 1.8 and 1.9.
This blade can be examined as a typical helicopter blade.

Values of coefficients a given in Table 1.5 confirm the position
that the helicopter blade by its characteristics in the flapping

plane approaches an absolutely flexible heavy line stretched by
centrifugal forces for which a = 0,

The greater the properties of the blade and torsion fiber
approach, the lower the tone of natural oscillations,
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The basic peculiarity or an atsolutely stretched torsion fiber
is the fact that its axls undergoes t'ractures at points of appli-
cation of concentrated transverse forces and in places of the
connection of the line with rigid elements. Such a fracture, es
a rule, appears at the place of sealing of the line. If into the
torsion line there 1is inserted & rigid section, then along the edges
of this section the same fractures will appear. Therefore, in those
cases when properties of the blade and the stretched torsion fiber
approach, these peculiarities appear with deformations of the blade.
Of course, the elastic blade, no matter how low its flexural rigidity
is, cannot undergo such fractures. Nevertheless, fractures peculiar
to an absolutely torsion fiber are transmitted to the blade and appesr
in the form of sharp bends of its axis. These bends are accompanied
by the appearance of concentrations of bending moments and the
increase in flexural stresses at places of the bend.

Let us consider several examples confirming this position.

Figure 1.11 gives the distribution of bending moments along the
length of the blade corresponding to forms of natural oscillations
of the first and second tone with a load almost equal to the weight
of the blade and placed on the relative radius r = 0.48,

At the polnt of bracing of the load there is observed a sharp
concentration of the bending moment, which leads to an increase in
stresses almost twice as compared tc an irrotational blade. Intro-
duction into the blade of the section with increased rigidity leads
to the appearance of the concentration of bending moment in the
region of this section (Fig. 1.12). But inasmuch as the lIncreace
in flexural rigidity leads to an increase in the drag torque on the
length of the rigid section, then the greatest stres:es appear along
the elges of the section, i.e., therc where the absolutely torsiocn
fiber would undergo fractures.

By the manitestation of the same properties of absolutely
stretched torsion fiber there 1s explalned the sppeararce of snarp (
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concentration in bending moment in the case of rigid blade sealing,
since the torsion line would have at the sealing site the same
fracture as that of a hinged-mounted blade.

The increase in bending moment corresponding to the first tone
with rigld sealing of the blade in the shank occurs almost six times
(see Fig. 1.10) as compared to the moment of an irrotational blade,
Such a sharp concentration in bending moment has a noticeable
influence even on values of frequencles of natural oscillations
(see Table 1.4), This considerably lowers the possibilities of the
method of approximation (see § 3) in “he application to calculation
of a blade with rigid sealing in the shank.

In a2 number of cases in practice it appears necessary to
introduce intoc the rotor blade additional hinges or to displace the
position of those hinges which are already in the construction of
the hub. The need to create additional hinges can be connected with
the necessity to lower the flexural stresses on some section of the
blade or with the change in frequencies of its natural oscillaticns,

Let us see how the introduction into it of an additional hinge
has an effect on flexural deformations of the blade. It was said
earlier that the blade of a hellccpter is similar in its charac-
teristics to a stretched torsion fiber. The stretched cheiln with
hinges continuously distributed along the length behaves Jjust as
the torsion fiber. Therefore, one can assume that the blade of a
helicopter takes during deformations approximately the same form as
a stretched multilinked chain, It is natural therefore that the
introduction into the blade of an additional hinge cannot con-
siderably affect the form of its deformations. This circumstance
is 1llusztrated in Fig. 1.13, where the form of the first tone of
natursl oscillations of the blade is shown with an additional hinze
introduced into it and without it. From Fig. 1.13 also it ls clear

hat the influence of an additional hinge ncoticeablvy has an effect
on the form cf bending moment only on the small section close to
the hinée. On section:c far from the hinge its influence is small.,
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Y, Fig. 1.13. Form of the
first tone of natural
I oscillations of a
blade with an additional
hinge and without it:
T T o g 7 a and b) forms of first
tone in the fleld of
N A e centrifugal forces
Siva without a hinge (a) and
[ with a hinge %b); c) form
G PA of first tone of 1irrota-
p; tional blades with a
/ hinge; 4 and e) form of
/Q( RN, bending moment in first
13 tone in the field of
/ . centrifugal forces without
-/ . a hinge ?d) and with a

hinge (e).
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It is necessary to note especially that in the examined case
when the blade has two hinges, forms of its oscililations in the field
of centrifugal forces very greatly differ from forms of cscillations
of an irrotational blade, During oscillations in the first tone the
irrotational blade is not at all deformed. Therefore, in the given
speclial case the approximate power method of ~alculation of frequen-
cies in such a form is expounded in § 3 will simply not be used.

It is also impossible to disregerd the field of centrifugal
forces in examining deformations of the blade in rotor of the
Derschmidt type with a hinge greatly remote from the &xis of rotaticn.
The form of oscillations of the lowest tone of the blade of thi:z
rotor and the bending moment corresponding to it are snown on
Fig. 1.14. RNeglecting the centrifugal forces the form of blaje woulli
coincide with a straight line, ani the magnitude of the bendinr
moment shown on Fig. 1.14, whlch fer this rotor is very great anu
actually determines the possibiility of its applicatior, woulld e
impossible to find,.
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f Fig. 1.14, Form of lowest tone

a2 of natural oscillations of a
| NI“P “/ blade with a hinge ascribed from
&s ﬁ?§+” the axis of rotation and bending

\‘ A moment corresponding to this form
&s (with oscillations in the flapping
a plane po/h = 1,35, with oscilla-

“':¥“'Lf\ tions in plane of rotation

R T TR R TR T » DPy/n = 0.91).

The examples given show that in a whole series of cases the
forms of natural oscillations in the field of centrifugal forces
considerably differ from corresponding forms of an irrotational
blade. This circumstance certainly should be con:idered in the
designing of the blade. Therefore, in work in the design office,
when all calculations are conducted on electronic computers and the
degree of complexity of the method remains simply unnoticed, there
is no sense in reverting to the methods of approximation.

§ 5. Torsional BRlade Vibrations

1, Problems Solvable in the Calculation
of Torsional Vibrations

Above in §§ 1 and 4 it was noted that the calculation cf fcrms
and frequencies of natural {lexural oscillations of the blade has
together with an auxiliary impcrtance (for calculation of stresses)
also an iniepenrndent importance as a method for selecting parameters
cf the blade which exclude the pussibility of flexural resonances,
This problem dces not exist for calculation of free torsionai
vibrations, since in practice oscillations considerable in amplitude
which were caused by twisting resonance were never observed. As
a rule, considerable torsional vibtrations appear only with flutter
or during forcei oscillations under conditions of proximity of the
flutter. Thercfore, the magn. .ude of frequency of natural torsione;
vibrations itself is of no practical interest (if one were not to
examine {t as 8 parameter characterizing the torsional rigidity of
trhe blade), ani results of the calculation of forms ani frequencies
of natural ousciliations have cnly an suxillary assignmernt for :cai-

~ylation of fiutter or ¢f flexural stresses, wnl~"h are ~a.cu.sgte)
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teking into eccount torsionc. eicrmations of the blade, The other
problem of calculation of fre.: torsional vibrations of the blade
is not raised.

There are basically two proolems of the calculation of forced
torsional vibrations. The first is the determination of elastic
deformations of the blade the calculation of which is necessary for
calculation of flexural stresses, and the second is the determina-
tion of values of hinged moments necessary for calculation of the
rotor control system.

2. Differential Equation of Torsionsl Blade Vibrations

Let us represent the blaie in the form of & cantilever recti-
linear rod with torsional rigclJdity variable in length GT,,. We will
congider the mass moment of inertia of the rod sections relative to
its axis Im, Just as the torsional rigidity, as & continuous functlion
variable in length of the rod, the centers of gravity of all sections
¢® the rod — 8s lying on the rod's axis, and sealing of the rod -
elastic on torsion.

It is natural that reduction of the problem on oscilliations
of the tlade to the calculation of sucin s model presupposes the
spplication of 2 whole series of simplifying assumptions. We will
consider that the axis of rigidity of tne blade is rectilirear ani
coincides with the axis of exial ninge of the rotor hub. We will
assume the flepping compensatcr m ejuesl to :zero.

Calculetion of the shift in csnters of grevity and a detercina-
tion of the influence cof the flappiny compensetor on freguencies of
natural oscillations will be exsmined in § &,

Application of the cnumerated assumplions permits sciving the
protlem on tersionsl vidbretions of the hisde ataciutoly lndepentent.y,
not connecting thea with 1ts flexurai vibrations,

Let us comyose the 4ifferential equaticon o7 torsional vitratinns

cf the Ylipde, Torjue in sestlong af the blese e le determine!d
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from the differential equation:
Myl'=—m, (5.1)

wheye M 1z the linear torque of external and inertial forces having
an effect on the element of the blade.

Under the impact of torque every element 6f the blade twiszts
at the angle:

M
dp =—""2 gr, ). 2
PG 4 (5.2)

where ¢ is the elastic angle of rotation of 'the blade section.

The value of torque, obtained from (5.2), will be substituted
into (5.1). Then the differential equation of twisting defcrmzticns
of the blade can be recorded in the form

[GT 2] + R =0. (5.3)

Let us examine the torsional vibrations of the rotor blade

revolving in & vacuum, The linear torque in this case will be equal
to:

Wex [ 35— (/y— 1) (5.4)

where Iy and Ix are mass moments of lnertia of the blade secticn
relative to its principal axes of inertia.

If the extent of the profile along the x axis is considerably
larger than along the y axis, and this usually occurs, then it is
possible approximately to. assume that

Iy—lyszlm, (5.5)

where Im is the linear mass moment of inertia of the blade section
with respect to the axis passing through the axis of rigidity.

Substituting expression (5.4), taking into account (5.5), into
equation (5.3), we will obtain the differential equation of torsional
vibrations of the rotor blasde revolving in the field of centrifugsl
forces:
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(U7 5,7} — @+ %) =0, (5.6)

The model of the blade examined here has the following boundary i
conditions: '

for r = 0O:
(T ,9"lo=¢,p%0;
fer r = R: 67 ,9']a==0, (5.7)

where e, is the rigidity of the rotor ccntrol system reduced *o

the axial hinge of the hub {rigidity of control determines the magni-
tude of rigidity of elastic sealing of the blade in the shank); Py =
rotetion of blade in axial hinge due to deformations of rotor control
system.

5. Determiration of Forms and Frequencies of Natural
Oscillations of the Torsional Blade

Here we will use the same method of solution which was discussed
in No. 1 of § 2 for determination of forms and frequencies of
flexural vikbrations. Let us assume that

(H=psinvt, (5.8)

Substituting expression (5.3) into equation (5.6), we will
obtain

(67 4V + (=02 L9 ==0. (5.9)

From this equation it immedisafely follows that forms of natural
torsional oscillations of a rotational and irrotational hlade are
identical, and the frequencies are connected by a simple relation
o1 the form

=i+, (5.10)
where v 1s the frequency of natural oscillations in the field of

centrifugal forces; Yo is the frequency of natural oscillations of
the blade of an lrrolational rotor,

“ntegraiing equation (5.9), taking into account boundary
conditions (5.7) for the case w = O, we will obtain

’ R R
=] {22\ 1 adr - =
p=y [5 Gf«p} ~idr+ Cynp }I,,(,:dr ) (
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Here and below the index at v, which denotes. that the frequency

& roturel o3cillations is determired for o = 0, will be omitted,

Equation (5.11) is solved by the method of successive approxi-

mations, just as this was carried out in the solution of equations
(2.4) in § 2.

Let us assign the arbltrary form.of oscillations ¢.

This form
should be in some way standerdized, for example

=L (5.12)
where 2 is the elastic angle of twist of the blade tip.

Then, fulfilling the operations assigned by expression (5.11),
we will determine the function

’ R 'g
8==(-9° wdrd 1. 5,
5 e ‘Slﬂd’-‘-‘nsos 1 gdr. (5.13)

The frequency of natural torsional oscillations of the blade
can be determined from the condition of standardization (5.12)

1.
ﬂa.i;, (5.14)
where SR is tne value of function § at r = R,
Assigning a new value of function

and performing operations (5.13) and (5.14) still as many times

as 1t 1s necessary to provide the necessary accuracy, we will obtain

the final values v and 9. As with the determination of forms and

frequencies of natural flexural oscillations, such a method of

successive approximations leads to the determination of the lowe:st

tone of natural torsional oscillations. In the determination of

subsequent tones it is necessary to fulfill the condition of
crthogorality

R
Jl.‘;"’;“"drao. (5.16)
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Here the index j denotes the form of the sought tone of
oscillations and index m the form cf the already determined lowest
tones. Assuming

,m-,a[._ --Z’:."‘-f‘"]- | (5.17)

we will obtain from condition (5.16) expressions for constant
coefficients Cpt

fl.ly“"lr
¢.==—‘;——.———— . (5 .18 )
Il- ('("P‘*'

Frequencies of natural oscillations of subsequent tones are
determined with each approximation by the formula

1 _
‘7”'.—__—-77:?- (5.19)
* [ T .

Upon completion cf the determination of all forms and frequencies
of natural oscillations necessary for further calculations it is
necessary to correct the frequencies by the formula (5.10), con-
sidering the influence of centrifugal forces.

Calculations of forms and frequencies of natural torsional
oscillations of a blade for real helicopters show that of decisive
importance in the determination of values of frequencies of the
lowest tone of oscillations is the rigidity of the rotor control
system, Almost always the torsional rigidity of the blade proves
to be considerably higher than the rigidity of the control system.
Figure 1.15 gives forms of the first tone of natural torsional
vibrations of blades of different helicopters found in mass
exploitation.

According to the relationship bhetween twisting strains of the
blade and rotor control system with oscillations in the first tone,
1t is possible to judge the magnitude of twilsting rigidity of the
blade as compared to rigidity of the control system, The relationship
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Fig. 1,15, Forms of natural torsional oscil-
lations of the blade with different relation-
ships of rigidity of the blade and control
system.

between these riéidities is estimated by the coefficient a (see
Fig. 1.15). This coefficient itself determines part of the tontal
angle of rotation of the blade tip due to deformations of only the
blade.

The described peculiarity in the relationship of rigidities of
the blade and control permits in certain calculations using the
assumption of the fact that twisting deformaticons of the blade are
small as compared to deformations of control and introducing into
the calculations only the twist of the blade due to the control
deformation. This assumption is frequehtly used during calculation
of flutter (see Chapter IV of Book Cne).

Results of the calculation by the expounded method permit
Judging the character of location of freqguencies of natural torsional
oscillations of blade with respect to harmnonic components of
aerodynamic forces., Figure 1.16 gives a resorance diagram of
torsional vibrations of a blade, plntted for one of the existing
helicopters, and Fig. 1.17 glives forms of the first three tones,

In No., 1 of this paragraph it was already noted that variable
external forces twisting the blade are small, and therefore even wilth
resonance of the amplitude of torsional vibrations they do not become
dangrercus for the blade strength, 1In view of this there is usually
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no attempt to avold twisting resonances, and the resonance diagram
shown in Fig. 1.16 is given only for an estimate of the absolute
magnitude of frequencies of torsional vibrations.

From Fig. 1.16 1t follows that even the second tone of torsionsl
vibrations proves to be in operating revolutions nps higher than the
fift. onth harmenic to the number of revolutions of the rotor, .




8 2o e I

S O PR,

. ey - PN © e i e MY
Rt B *

Frequencies of subsequent tones appear even above., Therefore,
probably only the frequency of the first tone of natural torsional
oscillations of the blade can be of practical interest.

All the above-mentioned considerations pertained to torsional
vibrations of the rotor blade examined separately neglecting those
connections which are superimposed on oscillations of construction
of the blade fastening on the hub, It appears that the connection
between torsional vibrations of separate blades of the rotor through

the control system can considerably change the whole picture of
oscillations.,

4, Determination of Forms and Frequencies of Natural
Oscillations of the Rotor as a Whole

Figure 1.18 gives a diagram of the contrcl system of the angle

of setting of blades used on the majority of contemporary helicopters.‘

-,
[ 4

Fig. 1.18. Diagram
of cyclic pitch con-
trol: 1 — lever of
blade turn; 2 — hori-
zontal hinge; 3 —
vertical hinge; 4 —
blade; 5 — disk of
cyclic pitch control;
6 — slider.

Constructively this system 1s carried out in such a way that the
Loading of a certalin control circuilt depends on what combination of
f'orces arrives on the disk of the cyclic pitch control from the
blades. The form of this comblnation denends on the form of vibra-
tions of the rotor, i.e., on the distribhution of phases of vitrations
by the biades., ‘''hus, ror example, in the case when all hlades
vibrale with an ldentical phase, only the control circult is loaded
by collective pitchi, When oppositely located blades vihrete irn a
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reverse phase, circuits of transverse and longitudinal control

are loaded. Finally, if the number of blades in the rotor is larger
than three, then such forms of oscillations are possible when all
forces arriving from the blades are locked on the disk of the cyclic
pitch control,

The variable forces appearing during blade vibrations cause
deformations of those control circuits which are loaded by these
forces. With deformations of separate control circuits the disk of
the cyclic pitch control oscillates, and vibrations of the disk
tie fully defined phases to vibrations of the blades, Thus, for
example, with vertical vibrations of the disk, appearing in the
deformation of the control circuit by collective pitch, vibrations
of the roteor of such form are excited at which phase of &sll blades
are identical.

When the disk of the cyclic pitch control during vibrations 1is
inclined, the oppositely located blades are excited 1n a reversed
phase. Thus the disk of the cyclic pitch control connects vibrations
of separuate blades in the rotor, As a result it turns out that
vibrations of blades can occur only with fully defined forms of
vibrations of the entire rotor as a whole, and the number of such
forms coincides with the number of blades in the rotor. With this
each form of vibrations corresponds to its value of rigidity of
control reduced to the axial hinge of the blade which depends on the
rigldity of that control circuit which with this form is loaded.
Accordingly, inherent to each form of vibrations of the rotor is its
value of frequency of natural torsional oscillations of the blade.

Consequently, for a rotor witn the number of blades zy there
1s 2y different frequencles of natural osclillations, which correspor.
to each tone of torsional oscillations of the blade. Inherent to
each frequency of natural oscillations is its adefinite form of
distribution of angles of twist along the length of the blade, but
qualitatively all forms corresponding to a definite tone of
oscillations are not distinguished, and thus, for example, tney
have an iderntical number of ncdes of oscillations.

By
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As an example 1t is possible to cite values of frequencies of

natural oscillations of the first tone for a four-bladed rotor of
the helicopter Mi-4,

The lowest values of frequencies with loading of longitudinal
and lateral controls attributed to working numbers of revolutions
of the rotor are 7&5; = 3,4-3,5, With loading of the circuit of
the collective piteh this values takes the value %ﬁf = 4,6 and

when all forces from the rotor are locked on the disk of the cyciic
pitch control, —he = 6.6,

A very important circumstance is the fact that within fre-
quencies of oscillations corresponding to harmonics to tne number of
revolutions of the rotor on which external forces have & noticeable
magnitude lies only the first tone ¢f natural torsional oscillations
of blade, All subsequent tones of oscillations lie above and there-
fore are of no practical interest.

§ 6. Joint Flexural-Torsional Vibrations of the Blade

1. The Connection Between Flexural and
Torsionsl Vibrations

Above free flexural and torsional vibrations of the blade as
two independent problems not connected between themselves were
examined, In a real blade torsional and flexural oscillations are
always connected. How great this connection proves tc be will be
shown below, We will examine vibrations of the blade in a vacuum
when the connection between torsional and flexural oscillations i

carried out only owing to the shift in centers of gravitv of sec*ions

with respect to the axis of rigidity of the blade and due to the
nonholonomic constraint through the flapping balance. Let us use
the method of calculation constructed on the basis of the method of

three moments, described in § 4, in rererence to calculation of
flexural vibrations.

The possibility of fulfillment of the calculation of frequcncies

of natural flexural-torsional vibrations can be useful to the desigrier

in the solution of @ whole series cof concrete trantical orcblenc,
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Thus, for example, the necessity of fulfillment of such a
calculation appears in those cases when to eliminate resonance it
is proposed to install extension talaricers on the blade. Here there
are considered those relatively rare cases when arrangement of hal-
ancers is proposed not to eliminate flutter but to change the
frequencies of natursl oscillations,

The desire to consider the connection between flexural and
torsional vibrations can appear for the designer also in the case
when the éalculation of frequencies of natural oscillations of the
blade {or some reason does not coincide with the experiment. Here in
a number of cases it can eppear that this distinction is explained
by a disregard of this connection. It 1is possible to hope that
results of calculations mentioned below will facilitate permission
of those doubts.

It is necessary, however, to note that the calculation of fre-
quencies of natural oscillations in a vacuum cannot give an answer
to many questions appearing in practice in connection with the
appearance in the blade of increased varying stresses with any
frequency and estimated as resonsnces, since aervodynamic forces can
introduce in many cases very substantial corrections into the patterrn
of the phencmenon.

2. Method of Calculation of Joint Vibrations

Pulfillment of the calculation of forms and frequencies of
natural flexural-torsionel vibrations is <onsiderably simplified if
one were to examine tre blades of orly the definite most widespread
type, during the calculation of which the following assumptions can

be used:

1. The axis of "la rigidity 1s a straient line colinclding
~lth the axis of ax.: 1.+,

In principle - wrhod of calculation will not te creornired wher
these arxes will r. eide, Onlv it will bhe necessar. to ir.ireduce
intc the calnulatt. Jormuians a rumier of soaiclionsl terns censideri:
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the distence between these axes. For simplicity of computations
let us assume that the axis of rigidity passes through the axis of
rotation of the rotor.

2. The plane of least rigidity of the blade is considered
coinciding with the flapping plane.

3. The blade accomplishes torsional vibrations due to twistinrg
deformations of the actual blade, deformations of the control svstem
by the hlade angle end as a result of nonhcionomic constraint through
the flapping balance with vibrations of the blade in the flapping
plane.

Fig. 1.1G. ral-
culation model
cf the blade.

Ax:s of rotor pctation

-—‘."

ortrol
—— . —
zvslem

Th.ese assumptions permit representing the bplade in the form cf
a welightless free beam divided into z sectiors, rlong the edges of
wilch witi a cortain extension xgy loads with mass m, are locered
{(Fig. 1.1v). Every load except mass m concentrated in the certer
L©ogravity of the corresponding element of the blade., possesses 3iso
2 certain moment of inertia /gy, with respect to the axis passiny
trrough. the centeor of gravity of the lcad and parallel elactic axis
ot the lade,

Fiexural and torsional rlgidities will be presented ir the forms
cf step curves in such a way that trey renair. constant for the extert

of eacn jection.
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The »resence of a flapping vziance leads to nonholonomic
constraint between flexural and torsional vibrations, which can be
expressed by formula

,,..i‘:_,,, (6.1)

where 9, is the angle of rotation of the blade in the axiul hinge;
Mxp — torque relative to the axial hinge; cynp — rigidity of blade
0

angle control system reduced to the axial hinge; n - flapping
balance; BO — angle of rotation of the blade relative to the
horizontal hinge.

Furthermore, boundary conditions in the shank of the hinge-
mounted blade during its oscillations in the thrust plane somewhet
change. In the presence of a flapping talance these conditions can
be recorded as:

where HO is the bending mousent and Mxp the torque in the blade shanr.
0]

With the composition of differentlal equations of vibrations
of the tlade in the flapping plane we will use the method c¢f trree
moments in that form which was discussed in § 4. The application
of this method to the calculation case examined here leads toc tre
following equations:

Ry Moy My A M, o 221 Qb :
Ny N (C . 3)
CaaMyyt oMy HdM = bS8+ 010 |
Here
. -
Q.in=—~T
T '
o i (¢ .5}
Qeri=—3 mypy(rae {=0,1,2,....2);
'
t, — verticel movements cf points of elastic axis of *:re llaie
(see Flam. 1.14%); ¥, — vertical movements c¢i nenters of yravity of

masses W, .
'




.
B I | e T L AR I

Expressions for constant coefficients a4 bi’ Cy hi, and 8y
are given in § 4, see formulas (4.,18)-(4.25),

Movemenis in elastic axis fi and centers of gravity of elements '
of the blade y; are connected by the relationship

fl’ﬂ'yl‘l"x‘n.v,'h (6.5)

wnere 9y are angles of rotation of elements of the blade around

)
)
J
J
J
J
/
)
/
)
)
|

its elastic axis.

] To determine the forms and frequencles of flexural-torsional
! vibrations of the blade one should add the equations of torsional

vibrations to equations (6.3).

If the torgue can be conslidered constant in magnitude for the
extent of each section of the blade, 1t can ve determined as

PS

A ST T ; g
Ty, = D et =0 Slgt O Imcnfid Smeg,g. (6:6)
[ ] []

A A el el e

"ot

In magnitude of torque tcresional deformations of the blade

2: I
= "Ill‘l' ‘30' (F ~\
Lel

Towys

where GTy,_,, 1s the torsional rigidity of the section of the blade
along a length equal to li-y and ?0 is determined by the formula

(6.1).

can be determined thus

In the use of the method of three moments boundary conditions
of the problem are considered in coefficients of equations of the
system. Thus, in ftne case examined here the boundary condltion
(6.2) leads to a change in coefficlents of the first two equations

: of system (€.3%). For a blade with hinged fitling in the shark these
; equations can be recorded in the following way:

— the t'irst eguation of system (6.3) from which tre value

Y T

SO 1s determined:
£9




Bo+2goeMup, -+ "oM1='Q: (6.8)
— the second equation of system (6.3):
M hﬁl—-———- .
g, + &1 1+1 Ny  Ne (6'9)

Thus the system of equations, including equations (6.3), (6.5),
(6.6), and (6.7), constitutes a system of differential equations of
flexural-torsional vibrations of the blade. The solution of this
system permits determining the form and frequency of natural flexural-
torsional vibrations of the blade, which enters intc the problem of
the calculation,

If one were to assume that the variables entering into differen-
tial equations (6.3), (6.5), (6.6), and {6.7) are changed according
to the sinusoidal law:- of the form

¥ ()=y,sin pt,

then these equations can be converted into a system of algebraic
equations relative to unknowns, which are peak value of former
variables. Only into certain coefficients of these equations will
parameters p2 ancd 7-33 enter by cofactors., If we assume p2 =1,
then these equations g;n be copied in the form

‘l-xms-xT&M +h M= =Qurs 67-"-""
Nigvv Nica (6 ,10 )
d‘-‘M‘-l+c“‘1l+ dlMl+l = b[—lu‘—]+ a‘u‘ +b,u‘,"; ,

—-— : 2
M"l -1 2 -(1 Y) ? ll.t‘?i+\’ mn; ."f,f;—gm‘xl" s (6.11)

:

o = 9, gl =
' = - (6.12)
"c—l ' _

v‘=u‘ I"‘olt (6.13)

where

]
6l-l+l=2 my,;
i1+1

8
6"‘]- [§ = Z m[y,.
; .

90

e
v

i,




The quantities entering into these equations are subordinated
to the following relations:

yi=p*v; ] '
Ji=pu;;
w=p;
M‘-p’m,; (6.1“)

It is convenient to solve the system of equaticns (6.10), (6.11),
(6.12), and (6.13) by the method of successive approximations. Tn
every approximation there ‘should be fulfilled a more precise definition
of parameter <y under the angular velocity of rotation of rotor ®»
assigned in the calculation.

Fulfillment of successive approximations is produced in the
following order.

Let us assign a certain value of parameter <y and arbitrary
form aof zero approximation of functions Yi and Py -
0 0
The functions taken as the zero approximation should be
standardized, for example,

vg-l-

Afier that by trormula (6.5) there can be obtained function f,
0

Then by equation (6.11) quantity ﬁﬁp , which is necessary for solutlion
o ;

of the system of equations (6.10) can be determined, Simultaneously
M,y 1s determined,

After solving the system of equations (6.10) and determining
uy from the first equation of this system, Bb is determined:

B 2 1~ g Fi, (6.15)
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Then by equation (..ic .o ucwernined, and by eguation i

‘1
(6.13) values of Vys which, furthermore, shcld satisfy the

condition émm-o are determined. (

The frequency of natural oscillations 1is determined from the
condition of standardization on the basis of the first relation of
(6.14) thus:

p’-;':. ' | (6.16)

After that from relations (6.14) functions y, and ¢, can be
determined, which are used for the following approximation fulfilled
in the same order. Simultaneously there is refined parameter <.

Such a method of successlive approximations leads to the determi-
nation of the frequency and form of the lowest tone of natural
oscillations, To determine the following tones there is used the
condition of orthogonality, which for flexural-torsional vibrations
has the following form: |

3 mspyte -+ ptrof] =0, (6.17)

Here index j denotes the form of the sought tone and index m,
the form of the already determined lowest tones.

Application of the expounded method of calculation glves results
quite satisfactory for practice,.

It is necessary to note tha* in those cases when the frequency
of natural osclllations of two consecutive tones have sufflciently
close values, this method of calculation does not give a convergent
solution., Practically, however, this circumstance does not have
great significance, since this can be only in the case when the
connection between torsional and flexural vibraticns is very weak,
and corresponding forms of vibrations can be determined separately
neglecting thls connection.
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3., Inflvence of the Connectlon Between Bending
and Torsion on Frequency of
Natural Oscillations

Here we will examine how much the frequencies of natural
flexural-torsional vibrations of the blade can differ from corre-
sponding partial frequencies, 1.,e., frequencies obtained neglecting
the connection between bending and torsion.

Calculations show that the connection between bending and torsion
has the greatest influence on frequencies of natural oscillations of
the blade in those regions where partial frequencies of bending and
torsion approach. Therefore, one should investigate only the giver
regions., Outside these reglons partial frequencies of the blade
and frequencies of the connected flexural-torsional vibrations
practically coincide.

It is known that partial frequencies of natural oscillations
of bending of a hinge-mounted blade for all contemporary helicopters
lie in very narrow, fully defined, zones, the location of which witn
respect to harmonics of external excitation cannot be substantially"
modified. On Fig, 1.20 these zones are plotted on the resonance
diagram of the blade. This diagram is constructed for a region of
frequencies including only a number of first harmonics to the number
of revolutions of the rotor, since external forces acting on the
blade with higher harmonics are insignificant in magnitude and cannot
cause any noticeable vibrations of blade. Falling into this region
are only the first three tones of partial frequencies of the bending
blade. Practically only these tones must be of interest during the
designing of the blade. Frequencies of natural oscillations of
bending can fall out of shown zones only for rotors with an unusual
method of fastening of the blades on the hub, for example, for
rotors with rigid fastening of blades or with a hub on a Cardan
joint.

Partial frequencies of natural torsional oscillations of the

blade can be changed in wider limits, basically due to the distinction
in rigidities of the rotor control system whose construction can be
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Fig. 1.20., Regions of location on a resonance
diagram of frequencies of natural oscillations
of the first, second and third tone of bending
and first tone of torsion for blades of dif-
ferent helicopters.

very diverse. Nonetheless, with respect to values of partial fre-
quencies of natural torsional oscillations of the blade there can

be made a very important conclusion involving the following. 1Into
the region of frequencies interesting to us there can fall only the
first tone of torsional vibrations. The second tone of torsional
vibrations appears, as a rule, in the region not lower than the

15th harmonic to the number of revolutions of the rotor (see Fig,
1.16), i.e., beyond the borders of the region interesting for the
designer. Oscillations considerable in amplitude with such fre-
quencies usually do not appear., Therefore, of practicel interest
from the point of view of the possibility of appearance of resonances
is only the first tone of natural teorsional oscillations of the blade,

Here it stands to remember that the rotor blade of the helicopter {

can have several first tones of torsional vibrations with different
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frequencies Jepending upon the form of oscillastlons of the rotor on

the whole and on what control circuit 1s loaded with this form of
oscillations, The distinction in frequencies of natural os-illations ‘
of these forms will be determined solely by the difference in rigidity
of loaded control circuits.

In flight every harmonic of external forces can exite only
one fully defined form of oscillations. Therefore in the investigation
the possibility of the appearance of resonance, one should certainly
check whether the resonance is possible when the rigidity accepted
in calculation corresponds to that form. In this paragraph only
natural oscillations of the system are examined, Therefore, we
will not dwell un this question in detaill,

Figure 1.20 shows a region in which usually frequencies of the
first tone of natural torsional oscillations of the blade lie for
those forms of oscillations of the rotor when circuits of cyclieal
control and collective pitch control are loaded. For rotors with
the number of blades of more than three a form of oscillations is
possible at which all forces arriving from the blades are locked
on the disk of the cyclic pitch control. The rigidity of control
corresponding to this form appears usually very high, On Fig. 1.20
the upper limits of the region of the location of torsional vibra-
tions in this case is noted by a dot-dashed line.

Let us consider the case most widespresd in practice when partlsal
frequencies of the first tone of bendlng and first tone of torsion
coincide in magnitude in the zone of operating revolutions of the
rotor., Let us investigate two variants of the distribution of
centers of gravity of the blsde along its length.

In both varlants in accordance with the assumptions accepted
above we will consider that the axis of rigidity of the blade is
rectilinear and cecincides with the axis of axial hinge of the hub.
The distance to centers of gravity of the sections will be counted
off from the axis of rigidity to the chord of the blade in percent.
All investigetions will be conducted in reference Lo the blade of
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the helicopter with a Durslumin pressed longeron with a chord

constant along the length. Such a blade has approximately a constant

linear weight along the length. Its chord consists of about one-
twentieth of the radius of the rotor.

So that results of calculations are most obvious we will
consider that with changes of the centering of the blade mass
moments of ilnertia of its sections with respect to the axis passing
through the centers of gravity are not changed, i.e., there is
maintained the position

[y y=const.

In the beginning let us examine the case when the centering of
sections of the blade are constant along 1lts lengtin, i.e.,

where b is the chord of the blade.
This variant of the distribution of centerings should be
considered very widespread in practice. Furthermore, it permits

'in very clear form tracing the influence of centering and estimating

ite significance as factors of the connection between flexural and
torsional vibrations.

Figure 1.22 gives a resonance diagram of the blade for this
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Fig. 1.22. Resonance diagram of the blade
with shift (constant in length) in
centering of 10% of the chord.

case, Solid lines show partiasl frequencies of bending and torsion
of the blade, and dashed lines, the frequencies of Jjoint flexural-
torsional vibrations, which are calculated for a shift in centeriny
with respect to the axis of rigidity equal to 10% of the chord of i
the blade. Calculations are carried out for the case when % = U.
Therefore, the sign of t-: ~h'#: in centering has no importance.

Here and later we intentionally examine the very wide range
of the change in centerings so that in a clearer form we can tra-:
its influence. In practice constructive possibllities and con-
ditions superimposed by flutter permit changing the centering in
very small limits, Usually for blades of rotors the centering “hanges
from 20% to 25% of ithe chord of the blade (here there are given
values counted off from the leasding edge of the blade), i.e., the
whole range of the change in centering consists of only about 5%
of the chord of the blade. Therefore, from examining Fig. 1.22
the conclusion can be made that displacement of the centering,

‘) constant along the length of the blade, has e very slight effect on

— values of frequencies of natural osclllations.
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Fig. 1.23. Frequencies of natural flexural-
torsional vibrations of the blade with the
step law in the change of centering along
the length of the blade with a shift of 10%
and 20% chordwise from the axis of rigidity.

In the second case examined here the distribution of centering
is selected in & way at which its influence appears the greatest
during oscillations witn a frequency close to the partial frequency
of bending of the first tone. The centering is taken as constant
along the length of the blade, but its sign is cnanged in the node
of the first tone of partial flexural form,

Step centering can be created for the blade in those cases when
an antiflutter balancer is introduced into the design not along the
whole length but vnly on & small section on the blade tip. Results
of the calculation for this vaeriant o the dlstritution of centerirg

~are shown in Fig. 1.23. The influence of centering in this case is

rather great. Therefore, with such distribution of it along *"ne
length the connection between bendirs and tersion should be con-
sidered during calculation of "'c Yieve,
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Fig. 1.24, Influence of shift chordwise by
10% and 20% of a load in 10 kg weight concen-
trated on the blade tip on magnitude of
frequencies of natural flexural-torsional
vibrations of the blade.

It is necessary tr e-amine still the influence of the concen-
trated load transferel chordwise. We take the magrnitude of load
equal to 8% of the weight of the tlade. This is prcuably that
maximum magnitude of the load which can be practically secured on
the blade. The most effective place of fixing such a load from '~
point of view of the creation of great factors of the connection ot
flexural and torsioral vikhrations is that point of the blade where
movemenits in the thrust plane are maximum. Therefore, we will
examine the case with fixing of the load on the tlade tip.

Figure 1.24 shcas results of the celculation for ¢ris case,
The influence of the concentrated load on the frequenc. -f natural
oscillations with great limits of it cen be ccnsidered ubstantial;
noweveYy, it is doubtful whether tre applicaticn of suct ireans o
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eliminate resonance can ve recomrenied to the designer. Nonetheless,
installation of the load can be exemined as a temporary means of
treatment of blades undergoing great varying stresses due to
resonance,

The last parameter, which should be examined as a factor of
the connection between bending and torsion, 1s the flapping balance,
To estimate its influence on the magnitude of frequencies of natural
flexural-torsional vibrations calculations with the flapping balance
n = 1,0 were made, This 1s the largest value of the flapping
balences ever used in practice. All the above-mentioned data were
obtained with »n = C,

Of the calculations made it follows that the influence of the
flapping balance is insignificant. However, calculation of the
flapping balance can in some measure be Jjustified, inasmuch as it
introduces a certain refinement into the form of distribution of
the bending moment in the blade shank.
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§ 7. TForced Oscillations of the Blade

1. Application of the Method of B, G. Galerkin for
Cal-ulation Pefcrmaticns of the Blade.
Determination of Static Blade
Deformations

c"l“’

The problem of determining blade defcrmations whose derivation is

given in § 1 is reduced to the solution of the differential equation
(1.9) already described atove.

[ElYT = Ny +mj=T, (7.1)

where T is the linear external load on the blade distributed alcng the
radius and variable in time

Above in §§ 2, 3, and % e examined the soiution of the homogeneous
equation for T = 9, whizh describes natural oscillations of the blade.
Here there will le examined forced cscillaticns of the blade when T is
a certain periodic function variable with frequency v.

In the special case when » = O the problém is reduced to the
determination of static deformations of the blade from a load TO
constant in time.

The simplest method of solution of equation {7.1) is the method
of B, G. Galerkin,

To i1llustrate the application of the method of B, G, Galerkin for
determining deformations of the blade let us examine in the beginning
the static problem when the external lnad is not changed with time.
With this ¥ = O, and equation (7.1) can be written as

[Ely Y —INyY =To. (7.2}
Let us represent deformations of the tiade in the form
=Py,
v ? W (7.3)

where yJ is the form of natural oscillations of the blade with respect
to the j-th tecnes; 6j — certain coefficients which we will subsequently
call coefficients of blade defcrmatiovns., Coefficlents of deformations
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in all further calcuiations w... . &pplicaticon of the method of B.
G. Galerkin will play the role of generalized coordinates of the systen..

We will substitute expression (7.2) into equation 27.2), multiply
all terms of the equation successively by y(o ’ y(l), y
wiil integrate them along the radius of blade.

s ete., and

In virtue of the orthogonality of y(J) functions the operation
made will convert the differential equation (7.2) to a series of
independent equations of the form '

Cly==A,, ' (7.4)
where
X C
Cl"'J Elly l';'d'+‘( Nly'ldr;
Iy (7.5)
A= J TyyiNdr.,
;
1
E . The quantity C’j will be called the generalized rigiaity of the

blade with deformations with respect to the form of the j-th tone in
' R the field of centrifugal forces. From consideration of formulas (7.5)
i - it follows that the generalized rigidity of the bplade Cj is equal to

‘ the doubled potential energy accumulated hy the blade during its
elastic deformations in the *ie’d of cenirifugal forces with respect
4 to the standardized form of the j-th tone. Cuentity Aj will be called
§ the generalized external force dcforring the blade with respect to the
form of the J-th tone. The cquentity cf gereralized force AJ is equal
to the doubled work of external berded forces TO on deformetions of
the blacde with respect to the standardized form of the j-th tone of
its natural oscillations.

From equation (7.4) coefficients of deformations of the blade 3,
can be determined !

i A
‘: BI-E';, (7.6)

after which the form of static deformaticns of the blade is deteimined {
from (7.3). )
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The more tones we take in the calculation of forms of natu:iai
oscillations, the more accurate the form of deformations is determined.
However, for purposes of practice i1t appears sufficient to ve i'mited
to the first four tones of oscillations of the blade. .‘3'

]

If coefficients of deformaticns 63 are knewn, then it is easy to
determine the bending moments and flexural stresses in the blade.
They are determined by the formulas:

Mt"—-z MW,
s
¢=2 8’30!_ (7-7)
]

Here M(J) and O(J) are forms of distribution of bending moments
and flexural stresses with stan. rdized deformations of the blade with
respect to the j-th tone of its natural oscillations.

The quantities entering into formulas (7.7) cobey these relation-
ships:

Oma-é‘i-n “ (7.8)

where W is the drag torque of sections of the blade.

-

2, Determination of Deformations of the Blade with
Periodic Application of the External Load

Let us examine the case when the external load is changed according
to the law:

T=T,sinvi. (7.9)

To solve this problem we will also use the method of B. G.
Galerkin, Representing the blade deformations in the form of (7.3),
we will substitute expressions (7.3) and (7.9) into equation 27.1),
multiply all terms of the obtained equation successively by ¥ J and
integrate along the length of the blade. In virtue of the orthogonality

of functions y J), we will obtaln a series of independent differential
equations of the form

mA;+CRy==Asint, (7.10)
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where

m =j m{y PP dr;

(7.11) (‘.}
A,-j'r.ymdr. |

Quanity mJ will be called the equivalent mass of the blade with
its oscillations with respect to the form of the j-th tone. If forms
of osrillations y(J) areistandardized in such a way that yf) =1, then
m‘j is the eguivalent mass of the blade reduced to its end. From the
first formula of (7.11) it also follows that the equivalentimass of
the blade 1s equal to its doubled kinetic energy when elements of the
blade move at speed y(J).

To determine the steady motion let us assume that

! =3 sinvs,

Substituting this expression into equation (7.10) and reducing all
terms of the equation by the quantity sin vt, we will obtain the
equation '

—~mAh 4 Ca = A, (7.12)

whence the value of the amplitude of deformations of the blade appears
equal to

"””’_‘_ALT"
. L
C:( —F:I_;}) (7.13)

It is easy to note that the relation CJ/'mJ is equal to the
frequency of natural oscillations of the Jj-th tone of the blade.
Actually, 1f one were to assume in equation (7.12) AJ = 0, then the
value of v in this case will determine the frequency of natural
oscillations of the blade and can be obtained from equation (7.12):

Ve ple=Cylmy. (7.14)

In accordance with expression (7.6) the ratio AJ/C'j determines
the magnitude of deformations in the case if the load Tv would be (
applied statically.
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It is convenient to represent expression (7.13) in form
YN =) 3D, r7,15)

where 3 1is the coefficient determining the magnitude of deformation
with a statically applied external force Tv; subsequently this i
coefficient will be called the coefficient of quasi-static deformations

of the blade; 3, — coefficient of dynamic increase in the amplitude of
oscillations.

For the examined case

W
1--”-"- | (7.16)

From expression (7.16) it follows that with resonance, when the
frequency of forced oscillations v is equal to the frequency of
natural oscillations pj, the coefficient of dynamlc increase in
amplitude turns into infinity. This result is regular fcr problems in
which forced oscillations without damping are examined,

In reality the blade of the helicopter operating in an air medium
undergoes with oscillations considerable aerodynamic damping.
Aerodynamic damping limits the amplitude of oscillations of the blade
during resonance and cannot fail to be considered, if problem of
calculation includes the determination of osclllations of the blade
under conditions of resonance.

With the determination of oscillations of the blade of the
helicopter, when oscillations appear under the action of aerodynamic
forces, it 1s very difficult strictly to separate forces of
aerodynamic damping from aerodynamic forces causing oscillations of
the blade. Such a separation can be carried out only ~onditionally.
ilowever, in a number of simplified methods of calculatlion such a
separation is used. Therefore, here we will reproduce such an
approach more specifically.
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3, Simplified Approach to the Calculation
of Forced Oscillations of the Blade

Let us assume that the external aerodynamic loads having an effect (,,
on the elastic blade in fl!ght can be divided into two parts: into
external loads having an effect on the blade and into forces of |
aerodynamic damping. We will approximately assume that external loads |
having an effect on an elastic blade coincide with loads having an
effect on an absolutely bending rigid blade. Then for execution of

the calculation it remains only to determine the forces of aerodynamic
damping.

Usually forces of aerodynamic damping are determined for conditions
with axial flowing around of the rotor, after which there is the
assumption that in all other conditions of flight with oblique flowing
around of the rotor the coefficients of aerodynamic damping are not
changed.

In conditions with axial flowing around of the rotor the force of
aerodynamic damping can be determined proceeding from the following.

During oscillations elements of the blade move with a speed of y.
Due to this angles of attack of all elements of the blade are changed
by the magnitude

‘c---'.-o
or

With a change in angle of attack on elements of the blade,
additional forces of aerodynamic damping act

. 1 . 1 .
)“1;“-—’— cpb-'ﬂ‘cn——’—t:ohfy. (7017)

Let us assume that the aerodynamic load T can be represented as
consisting of two components:

TonT ot T e (7.18)

where T, 18 the asrodynamic load acting on the rigid blade; and T,
is the additional load from aerodynamic damping appearing with elastic
oscillations of the blade.

Then equation (7.1) can be rewritten in the following form:
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[Ey")" ~NYY 4 mj+ - cjbarimT, | (7.19)

i Let us examine oscillations of the blade from the sinusonidal

component of the aerodynamic load, which 1s variable according to fhe
law )

T To=T,sinv.

If we represent deformations of the blade in the form of (7.3)
and apply to equation (7.19) the method of B. G. Galerkiﬁ, then it is
possible to arrive at a system of ordinary differential equations
with respect to coefficients c¢f deformations 63’ Individual equations

of this system will be connected with each other by terms intc which
there enters the integral:

. )
D'.-; brymy“"df.

where y(J)'and y(m) are forms of natural oscillations corresponding to
different tones (J # m).

In simplified methods of calculation the integrals DJm are usually

assumed to be equal to zero, although such an assumption in many cases
cannot be justified.

If, nevertheless, we take this assumption, then as a result
using the method of B. G. Galerkin we will obtain a number of
independent cifferential equations of form

! w4+ Cppm Apsinw, (7.20)

where the coefficient 65 determines the magnitude of aerodynamic
damping:

LI |
=3 "'".S””m“" (7.21)

Dividing alli terms of equation (7.20) by my, we ottain the
equation of the form

Y328+ o= AAR s, (7.22) .
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where

Usually for the characteristic of the magnitude of damping there
is used the coefficient

- N
B e—=
™

Its magnitude in reference to aerodynamic damping of the blade
is calculated by the formula

;,..._ - ‘._‘_ Sbr(y‘”]’dr. (7.23)

Solution of the equation (7.22) carried out in this way, as was
done above in the solution of equation {7.10), leads to the formula

.:ﬂ- .‘:tho

where the coefficient of dynamic increase in the amplitude of
oscillations

7 1
= -G +aC) (7.24)

Thus, the solution of the problem c¢xamined here is composed of
the determina*ion of quasi-static ccefficients of deformatinns o and
treir subsequert multiplication by the magnitude of coefficient of
dynamic increase in amplitude A,

Such an approach has certair. dis~repancies in virtue of tore
artificial separation of aerodynamic fnrces into two comporents by
formula (7.18), the insufficientl, founded assumptlion of ttr fact
that DJm = 0 and the approximate determination of coefflicients cf
aercdynamic damping for conditions with axial flowing arcurd of tne
rotor. Therefore, in §§ 8 and 9 there will be discussed methods of
calculation in which t~- ~"mplificatiors given herc are not used.
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However, such simplified approach describes very well the
qualitative pattern of phenomena observed during oscillations of the
blade., ' '

L, Amplitude Dlagram of Blade Oscillatione

Above in § 7, it was already indicated that for an estimate of
the char~cter of bplade oscillations a rescnance diagram of the blade
ic widely used. A resonance diagram permits estimating how much the
frequency of natural oscillations of the blade differ from freguencies
of excftation ard there is no danger in the appearance of resonance
osci]laﬁions. However, in those cases when the freguency of natural
oscillations and frequencies of excitation do not differ greatly, it
is intéresting to estimate to what amplitudes of oscillations of the
blade this can lead. Such an estimate car. be made by using the
amplitude diagram of blade oscillations. This dlagr.m, constructed
for a blade with standard mass and rigidity characteristics, is shown
in Fig, 1.25,

‘aP ! I
‘ A o
'{\/ Fig. 1.25. Amplitude diagreyw
[} Zesond A of blade oscillations.
- ik
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Plotted along the axis of abscissas on this diagram is the
'requency of excitativn referred to the angular velocity of rotation
of the rotor,

;""!‘l {7-25)

I'intted alony the axls of ordinates gre ~L.officients of dynamic

ircresse in amplitiade of ogcillations, The aimprns 10 copatructed




only for the first -“ree tones of elastlic oscillatiorns of the blade
with tre uge o dar 'ng faztor:z :alaula-2d by tihe fovmila /7, 0RY,

5. Calsul:ticrn of Oszillaticrs in the lase when the

Phas= of Application of “xternal load is
Var_able Along the Leng“ of the Blade
In No. 3 of this section there were given formulas for the case
when the external lcec is represented in the form

T.-r.lh_ﬁ.

Such a form of recording of the load is possible only in tre ~sase
when the phase of its application along the length of blade is ccnstant,
As a rule, such a pattern during oscillations of the blade of the
helicopter does not appear. The phase o “he external 1load changes
along the length of the blade, and therefore the load should be
represented in form

Ta=T.cosvt-4 Fosinv, (7.26)

where ccmponents of external load P, and T, are changed along the
length of the blade according to various laws,

Substituting the expression (7.26) into equation (7.19) and

using the method of B. G. Galerkin, assuming that Djm = 0, we will
obtaln
rly +i+Cly=Fycos w4 Fsnvt, (7.27)
where
4 -3"-0”‘0:
:,-jr.w,.

‘Tet us assume that

A\
o

Y= cnw 4+ smw. e,




Then .
1
(7.29)
J
where
a ,
=% -,7’_:-
‘2-&- (7.30)
C; rm

are coefficlents of cuasi-static deformations of the blade.

Formulas (7.29) permit determing dynamic coefficients of
deformations of the blade if quasi-static coefficients of deformations
obtained with respect to aerodynamic loads P. and F are known.

6. Aerodynamic Load on a Rigid Blade

In flight variable loads with freguencies multiple to revolutions
of the rotor act on the blade of the helicopter. As already was sald,
the greatest varying stresses in the blade cause the first to eight
narmcnics of aerodynamic load to revolutions of the rotor. Higher
harmonics appear usually so small that they do riot cauvse any
noticeable stressec in the blade even with resonances.

The2 calculation of variable aerodynamic loads on the blade
presents well-kiown difficulties. These difficulties are counnected
first of a&ll with the necessity to determine the alternating field
of induced speeds end to calculate the nonlinearity in the dependence
~f aerodyna-ic coefficients on the angle of attack of the profile, M .
numcer and cornection of loads with torsional vibrations of the bdlade,
An account of these peculiarities is examined in the appropriate
paragraphs, Here we will compose formulas for determining variabtle
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aercdynamic lcads on a bending and torsicnel rigid blade with the

following assumptions.

a) We will consider that the inflow angle to the profile of the
blade ¢ (Fig. 1.26) is small, and therefore it is possible approximately
to assume that :

_ ~Ur '
@= "’“gu v, ‘ (7.31)

where ©® is the inflow angle; U and U are mutually perpendicular
components of the relative flow rate lyxny in a plane normal to the
axis of the blade (see Fig. 1.26). Here the speed Uy is parzllel to

. the plane of rotation of the rotor.

Fig. 1.26. Diagram of flowing
around of a bending and
- torsional rigid blade,

778

Plane normal | Flapping
to the axis N plane
of the blade ‘e,

' !
Assuming also that cos® =1, we will consider that the sought load

T, effective in the flapping plane, does not differ from load oy
perpendicular to flow flowing tc the blade profile (Fig. 1.26).

b) We will assume that the quantity of relative flow rate U
flowing arcund the profile differs little from quantity .t
U=xU,. : (7.22)

c) We will consider that with the determination of loads in the
flepping plane the drag of the profile can be disreparded, and we can

assume that cx = O,

The coeffircient of 1lift of the profile cy will be considered (
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linearly dependent on the angle of attack of the profile a:

9=6yC. (7.33)
d) The induced flow rate v flowing through the rotor will be
considered constant along the entire area outlined by the rotor:

L9

g=const. (7.34)

N

With these assumptions only the constant part and fivst two
harmonics of gerodynamic forces appear considerable and then only at
2verage and high speeds of flight of the helicopter. Higher harmonics

appear small, and their calculation with enumerated assumptions is of
r;0 interest.

Using these assumptions, the linear aerodynamic load on blade can
be determined by the formula

T=-; 60U} (7.35)
Let us assume further that the angle of attack of the profile
cg?p""g‘!' (7'36)
!
where O is the angle cf setting of the blade profile in the section

at a distance r from the axis of rotation,

Then formula (7.25) can be converted to the form

T=-Gebls 3+ U, (7.37)

For an absolutely bending rigid blade suspended to the hub with

the help of a flapping hinge, speeds entering into formula (7.37) can
be determined by the following formulas:

U, = oR -+ psing);
(7.3R)

UymeR (y—pcongis—Zhy ).

Here § — the flapping angle of the blade relative to the rlapping
liinge; b.-% — derlvative of angle g with respect to time; A —~
relative flow rate through the rotor;

Ao=p tgar+in
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wrere ap ic the angle of attack ~f i{re rotor in axes of the shaft:
#s — irduced flow rate constant along the disk of the rotor attributed (
to @R

The blade angle can be recorded as

@r=00+Ap—0 Sin y—0, cos p—xpo, (7.29)

where §, 1s the blade angle on the relative radius =07 or other

radius accepted for reading of §, when fo=0; Ap — geometric twist of
the blade; 8; and 8, are angles of cyclic control of the blade assigned
by the cyclic pitch control,

If one were tc ~~vresent flapping motion of the blade in the form
of series

p°=a°—z(a,cgs ny+bysin ng) (7.40)

and retain in it only the first two harmonic components, inasmuch as
subsequent components under the accepted assumptions are small, then
the expression (7.37) can be converted to the form

-

T=_;".ﬂbw“’zm [ﬁo'l‘ Z(p.cos ny+ 7’. sin n9) ], (7.41)

where

Bo=b i afre LoYo — Luteg, o+ Lo, 1.
Py bp5+0+2“)% 4“”"49%}
pl=5[—?700+(;’+ 'i‘i") b -%- F;¢a+P7‘bz]:
ﬁl=$[9";+21"-?:+ (—'-’-!'-:—IA’)G}—P?M,—%—JQ] ; r7.,-2}
Py=b [ - -}-9’9& praj+s (7’+ “'2— p? )‘02 + 27%:] ;

5,:-'5[—- -;——p’ao—l- prb}—2ria,+x(r14 -i— p’)b, l

In the process of fulfillment of these transrormations,
substitution allowing the carrying out of transition to the so-called
equivalent rotor was used.

-

An equivalent, rotor is called a rotor wnose shaft we will mentally
q J
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turn relative to the real rotor at such an angle at which the same

angles of attack of sections of the blauade are attained without cyeclic
control of the blade angle. All formulas written for the eyulvalent
rotor can be used without changes for the real rotor not having a
cyclic pitch control. The equivalent rotor is usually also given
properties of the rotor not having a flapping balance. In this case.
the equivalence of formulas 1s observed only with correct to the first
harmonics of the flapping.

Transformation of formulas for aerodynamic loads in reference to
the equivalent rotor was performed with the application of the
following of substitutions:

®r==Fucy + A?=0°—Ido+ a9;
a}=a,—xb;-}-6;;

=)ot (xb— 'x)-;

where g 18 the true blade angle taking into account the action of
the fMlapping balance on that radius of which is accepted for reading
of this angle; a} 8}, and § — coefficients of flapping and the relative
rate for the equivalent rotor.

Higher harmonics of aerodynamic load will not be examined here.

Figure 1.27 shows the constant part and coslinusoidal and
sinusoidal components of the first two harmonics of aerodynamic load
‘or the typical blade of a helicopter obtained by formulas (7.42) for

conditions of horizontal flight of the helicopter when p=0.28,
]

On Figs. 1.29 and 1.29 these loads are addedf’and there is shown -
the relative aerodynamic load P having an effect on the blade in the
longitudinal plan: of the rotor when ¢+=0'and ¢=180° (Fig. 1.29) and in
the transverse plane when $=90°and $=270° (Fig. 1.29).
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7. Determining Coefficients of Flapping of the Blade

To determine eerodynamic loads by formulas (7.42) it is necessary
to know the coefficients of flapping of the bending rigid blade.

Coefficients of flapping can be determined from the differential

equation (7.1) if one were to represent the solution of the equation
in the form

=, (7.44)

where y(o) is the form of oscillaticns of the olade with respect to
the zero tone,

For the rigid blade this form of oscillations coincides with a
straight line,

r-lt,!

” .

If the distance from the axis of rotation to the flapping hinge 1is
equal to zero (,w=0), then

”-’o (7-“’5)
which is correct both for a rigid and for an elastic blade (see § 4).

Assuming fa.=0, we will substitute expression (7.45) into the
differential equation (7.1) and apply tc it the method of B. G.
falerkin. This operation leads to the differential equation of
flapping oscillations of the blade

10.+m-} Ter, (7.46)

where I 1s the moment of inertia of the blade relative to the flapping
hinge.

Fquation (7.46) can also be obtained from the condition of
equality to the zero of the moment c¢f all forces relative to the
flapping, hinge.

Substituting cxpressions (7.40) and (7.41) inte equatinn (7.46)
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and equating coefficients with similar harmonic functions of the
azimuth, we will obtain the system of equations from which all
coefficients of flapping can be determined. This system of equations
will be written in the form of a table (see Table 1.6). ]

Table 1.6.
s | a * a, 5, ¢
* J 42 I # goate Luich
/7 4 srixC | ot [slilisate iy
V1 -A-;’;’L‘ 3',:3 -mx8 ‘
- ;';’t' V7 Ips |epalroans?
-x8 é-lﬂ':'l‘f) -l - dxter
;’p’t x8 | 24 E-x«-}pq ’

Every equation of the obtained system constitutes a sum of
products of certain coefficients recorded in the squares of Table 1.6
on the unknown coefficients of flapping of the blade, which enter
simultaneously into several equations and are carried out vertically
in a special line placed above the table. Well-known coefficients of
every equaticn occupy one line in Table 1.6. 1In the right side of
the table in a special column there are given the coefficients of ¢,
which form the right side of equations. Unfilled squares of the
table correspond to coefficients equal to zero,

In the composition of the tavle the following designations are
used:

Aws

(7.47)

.

[
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Are S brodr; |

L
B'==5 brig dr; , (7.4%)

e ‘fvz;?,,};.

The mass characteristié of the rigid blade 7Y is determined by the

following expression:

Y=¢:050.7R‘ :

o (7.49)

With the solutvion of this system of eguations it appears that
coefficients &n and b2 are ccnslderably less than coefficients 8

*
-

ai, and bl Therefore, they can be disregarded in the determination
of coefticients ags bi, and az. This assumption leads to simple
formulas for determining the coefficients of flapping of the blade

aozy[}.;B-i-A'-i-—;-p’C']; , , *

oC +28"
2= » [ .

1 1 i . .
A-g¥e
’ B
blz.__p_.ﬂ——: ® : -
A+-l—|ﬂc . (7.50)
. .
y ’ *, 68 o 3
o — T Bb 422 g1} —u? L =G
0= oAy [st \4-4 1+ Y. ax) B (2ACa,-;-— Yo )]

K

R TIryT

[,; (—4A3a; +§£--b; )-{-p’ (2.40?—3-%- a,)] 3

where

Yo .

5 1
1—-5-:\'(A+ 3 v’C)

8., Simplified Calculation of Elastic
Oscillations of the Blade

On the bacic of simplifylng assumptions accepted In this
paragraph there can be constructed a calculation of elactic
oeznillations and flexural stresses in the blade in conditions of
norizontal flight of the helicopter. Such a caiculation naturally

cannot give positive results in the application to low flipght, cpreds
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when the baslc role is played by variable loads connected with a
ncnunitorm fieid of induced speeds, and high speeds en it is

impossible not to consider the nonlinecarity of aercdynam‘c coefficients
depending .on the angle of attack and phenomena induced by the (
compressibility of flow, :

[

In accordance with the above-mentioned formulac it 1s convenient
to produce calculation in axes of the equivalent rotor.

Calculation of elastic osciliations of the blade is fulfilled in
the following order:

1. First of all there are determined parameters of cordltions of
the flight in which calculation of stresses srould be perfrrmed.
These are the following parameters:

a) angle of attack of the rotor Gmm:

b) angular velocity of rotation of the rotor w;

c) height and speed of flight, which are represented 1ir. tre
calculation by coefficients p and u,

2, There 1s calculated “he relative rate of flow trrough tre
rotor according to the formula

. &,
de=pige,,+ -‘-‘—-;;—L;Tsfo .-

\ L)
f)
g

wnere €, is the tarust coefficient aof the rotnr,

3. 'The blade angle in the control secti-n vre gt ive %o wrinr i3
assigned the geometric twist »f tre blade is saiciisted,

Neglecting for~es connected witn the secornd carsaris of toe
flapplng motlon thiz angle can be determined ny 7 oriin

o 8% + - 0P+ 0C

tr .-
Porr ™= T . 7.
l*ﬂ;‘ﬂb

("
4]
C?

pat e e e — o e . st =t
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D-f br; | (7.53)

t?lnjtdﬂﬁ;

t — thrust coefficient;
¢ - rotor solidity.

4. By formulas (7.50) there are calculated cnh=f'ficients of
fiapping of the blade and by the formulas (7.41) ani {7.42), exterral
loads on the blade,

5. To determine flexural stresses it is necessary to calculate
the forms &snd frequencies of natural oscillations of the blade.

6. If such a calculation is periormed, then according to
formulas (7.30) there can be determined quasi-static coefficients of
deformations with respect to different tones of oscillatlons of the
blade from the constant part of the first and second harmonics of the
serodynamic load.

Substituting expression (7.41) into formula (7.30), we will
obtain values of quasi-static coefficients of deformations with respect
to the j-th tone of oscillations of the blade.

w-ﬁ-w{’:’ﬁ"*--;—ﬁﬂ]:

W] -romet (4 + 0 8): |
Lt O S AT
ﬂ'-i:v [-5vC TrBuits(Ar- 9 o +24);
W= 5w [~ T rCat 8- 2Am (A +FC)a].
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Hepe tne subocript at coefficients of quasi-static deformations
of the blade correcponds to the order of harmonic of aerodynamic

forces, Thne index j denotes coefficients referring to the J

of oscillationzs of tre blade; v

Y +ton

3 is the mass characteristic <f tre
blade wit) deformations with respect to the Jj-th tone:

y=12 (7.55)

For integrals entering into formulas (7.54%) there are accepted
the following designations:
\ .
A/ =§ br’ym dr;
1 .t -
BI =J bf;lw dr;
'-‘- ——
Cl=§ byw dr;
: 1o _ (7.%6)
A}=J brp, ' dr;

‘ .
Bj= ‘( bray"” dr;

|
C”'J 12 ?’ZU) d;'

]

where y(J) is the form of oscillations of the blade with respect to
the j-th tone, standardized in sirh a way that for Fmljlim=l.

7. Tet us rccord deformations of the blade in the followlng form:

y=l[ey—¢,co3p—d;siny— ;05 2y — d,sIn 2} g 4
+[€o— e cosy— 1, siny—e,c08 2) — £, 5In 2] 4
+ (80— g1c08 4 — Ay siny— g, c05 2)— 1,810 2]y - ., (7.57)

Here to determine deformations of the blade, beslides the form of

the zero tone, which in the case ry = O coincides with a straight

line, there are used first three tones of natural osciliatiocns of the
blade y(l), y(g), and y(j), standardized in such a way that for

r=R yW=R, Then coefficients of deformaticns of the blade entering
into formula (7.57) can be determined in terms of quasi-static
coefl'ieients of deformations in accordance with (7.29).
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‘zalculating character used on almost ell stages of the calculation.

‘ealcuiati-n pousesses a very important advantage — great clarity. In

ATe estimated and anslyzed on the basis of dependences representad

" . Tor nct less than a month. Contemporary rates of designing of the

“-arried out only on high-speed electronic computers. It {is natural

As an example let us write tne formulas for determination of
roefficients of detormations with respect to the first tone,

a=k; 4‘
‘.._‘ —[lf%.!:{'l’,i‘ 2%, éff’ : - -[l[i:!i%’*'ﬁ'j M :
!—7‘ +‘a—’! ‘—';f +q_z
' (7.58)
ey i

I dynamic coefficients of deformations are known, then there can
easily be determinci any components of stresses effective in thre blade.
This will be discussed in more detail in No. 17 of § 8 and in Ko, B of

o

v 9

et 3

In the simplified method of calculation discussed here, besides
trne initial assumptions ccncerning physical properties of the model
of the blade, accepted with derivation of equation (7.1) and with
ralcuigtion of the right side of this eguation reduced to formula
(7.35), there is used a multitude of additional assumptions of a

Aitnough all these simplifications make the method of calculation
fully useful for execution manually, they introduce a multitude of
inac;utacies which«yield badly to guantitative appraisal. Nevertne-
less, in spite of this deficiency, the described simplified method cf

fact, all results of calculations obtained by otrer improved methods

nere in sixplified form,

‘Hiowever, even with the application of all these simplifications
calculation by this method manually requires the work of cne calculator

yiade cannot be provided when calculating with such duration.

Therefore, the calculation of elastic oscillations of the dlade,
utilized for selection of it in the process of designing, can he
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that in this case there is no need to use assumptions facilitating

the process of the calculations. j
Therefore, in § 8 there will Le discussed the method of calculaticn

founded on the same initial assumptions if one were not to consider the

calculation of variable induced speeds but that fulfilled without any

assumptions of a calculating character,

§ 8. Calculation of Flexural Strecc<es in the
Blade at Low and Average Speeds of Flight

1. Peculiarities Distinguishing Conditions
of Flight at Low and Average Speeds
Low and average speeds of a helicopter are examined here as
conditions sufficiently remote from stall in which, furthermore, there
cannot be taken into account phenomena connected with the
compressibility of flow. Proceeding from this, during calculation cof
aerodynamic loads it is approximately assumed that

c'-?--c;.q. (8.1)
This assumption considerably simplifies computations necessary

i.1 the composition of calculation formuilas.

On the other hand conditions of flight at low spe=2d can be
defined as conditions especially dangerous for fatigue strengti, in
which the greatest variable flexural stresses in the blade frequently
appesar,

These considerations justify the application of the method of
calculation useful only for low and average speeds of flight and not
useful for high speeds and those conditions in which phenomena
connected with the nonlinear character of thc dependence ¢, = fla)

and with the compressibility of flow become decisive,

It is necessary to note that assumplion (8.1) does not always
appear correct for conditicnes of flight at Low speeds, In those
cases when on the blade of the rotor ther. occurs an excessively
greal load, calzulation spould ve vroduced taxking into account thne

LY
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rionlinear dependence of aerodynamic coefficients on the angle of
attack of the profile. The method of such a calculation will be
examined in § 9.

The overload of blades can be judged according to the magnitude
of thrust coefficient of the rotor t. Calculations show that
assumption (8.1) can be used in conditions of low speeds without the
introduction of considerable errors into the results while t < 0.18.

In conditions with vertical overloads of such as, for example,
conditions of braking of the helicopter before landing, disturbance
of this inequality is possible for those rotors for which in a steady
state of flight it is observed. All these considerations should be
considered in the selection of the method for calculation.

2. The Method of Calculation of Stresses

Discussed in this paragraph is tne most widespread method of
calculation of varying stresses, which is based on the applicatinon of
the method B, G. Galerkin with the expansion of coefficients ol
deformations in Fourier series with respect to harmonics,

In connecticn with the possibility of the application of this
method for the calculation of conditions of low speéds, into all
calculation formulas there are introduced harmonic components of the
induced field, and the problem of deformations of the blade is

solved jointly with tne problem of the determinaticn of inductive
speeds,

However, such an approach is not an obligatory belonging cf the
proposed method here, With the calculaticn of stresses at average
speeds of flight, when variable induced speeds intrcduce not very
conslderanle refinements into the results, they cannot ve considered.
In this case the method of calculation will be very greatly simplified,

If one were to take the assumptior (8.1), then the aerodynamic
load will appear to be the lineur function of movements of elements
of the blade, and the problem of calculation of flexural deformations
will lead to the solution of the linear differential cguation (1.9),
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To solve this equation the method of B. G. Galerkin is used.
Deformations of the blade are in the form of a series with respect to
: elgenfunctions, and temporal coefficlients of this series are expanded
¥ in a Fourier series. Application of the B. O. Calerkin method
converts tHe differential equation of oscillations of the blade to a
system of algebraic equations relative to unknovwn coefficients of
Fourier series, and the determination of flexural deformations of the
blade is reduced to the calculation of these unknown coefficients,
Such a method of calculation will be discussed here.

TR PRSP ANT] UG TR0 o (T A s < b 6 ot on

3, Assumptions in Determining Induced Sr .eds

In calculating flexural stresses at low flight speeds when their
' magnlitude is mainly determined by the degree of irregularity of

¥ induced speeds, it is very important to know on the basis of what
assumptions this field is determined.

In Book One (Chapter II, § 5) it was already stated that induced
A speeds can be represented in the form of the sum of external and
3 5 natural induced speeds. This division is somewhat conditional but
- -appears very useful, since it permits giving an appralsal of the
E ;5 ) infiﬁence of separate components of induced speeds by analogy with
1 the fact that it 1s already known for the wing of an aircraft and
therebyr Jjustifies the acceptance of certain assumptions important for
the following presentation.

The flow past a blade of a helicopter in the flow with a
nonuniform field of induced speeds is analogous to the flowing around
of 8 wing of an aircraft during flight in erratic air, when the wing
continuously encounters air currents with different speed and
direction, With rotation of the rotor the blade also encounters on
its path a nonuniform field of speeds, but this field is caused not
ny atmospheric turtulence but by the induced influence of the whole
vortex system of the rotor., This field, hy analogy with a wing, is
usually called the external fieid of induced speeds in contrast to
the field of speedz Induced in the region of the blade by its natural
vortices flowing from it in connecctien with s (hange In circulation
with respect to time and radius of the blade., These vortices create

12¢
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considerable induced speeds at the blade only because they are at a

very close distance to it. With departure al a distance of 20-30o in

azimuth of the rotor, thelr influence on aserodynamic load cii the blade
vanlshes. 4

Just as with calculation of a wing, in determining aerodynamic

loads on the btlade it 1s possible to use the "hypothesis of

staticnarity.,”" By this hypothesic it 1is assumed that with nonstationary

flowing around of the profile the same loads act on 1t as if the
streamline flow appearing at the examined instant would remain constant
in time, 1In accordance from this hypothesls, with calculation of
aefodynamic loads on the wing there is considered a change in angle

of attack only from the external velocity field, and the influence of
natural induced speeds will be disreg: .ed.

Let us use & similar approach to the blade. In the determination

of aerodyramic loads we will consider only the external field of
induced speeds.

During the calculation of this field certain additional

assumptions connected with peculiarities of the vortex system in
conditione of low speeds can be accepted.

Figure 1.3C shows the form in the plan on the system of free

vortices flowing from blade tips of a five-blade rotor in conditions

of flight with a speed corresponding to pn = 0.05. At this speed the
varying stresses in blades of the rotor reach maximum values,

qprection of flisht
g ,

Fig. 1,36, Ferm in tne plan on
a system of vortices flowine

from blade tips in conditions
u = 0,05,
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The picture shown in this figure is incomplete, since shown on
it are only free vortices descending from blade tips and not vortices
descending from all other radii of the blade. Radial (transverse)
vortices are also not shown., However, even from this picture it is
possible to form an idea as to how close vortices in conditions of

xlow speeds are located. This peculiarity of the vortex system permits

that induced influences of separate vortexes merge and appear in the
form of a general irregularity of the total velocity field., Sharp
peaks of induced speeds, which are characteristic for a vortex system
with rarely located vortices, do not appear. Therefore, at low speeds
of flight, especially for rotors with a large number of blades,
induced speeds can be determined from the theory which examines the
configuration of the rotor with an infinite number of blades.

With an increase in the speed of flight the system of free
vortices starts to be extended and becomes more rare. In the same
direction the vortex system is changed with a decrease in the number
of blades in the rotor, Calculation with respect to a configuration
with an infinite number of blades becomes less accurate,

With transition from the rotor to a ronfiguration with an
infinite numbgr.of blades, the local effect of vortices directly

adjoining to the blade is so greatly weakened that we can epproximately

assume that this configuration does not consider the influence nf
adjoining vortices, and, consequently, the velocity field determined
by it practically coincides with the field of external induced speeds.
The above-stated considerations lead to the conclusion that for
the calculation of elastic oscillations of the blade at low speeds »f

flight there can te used the vortex theory founded on the configuration

with an infinite number of blades,

In flight at low speeds there is usually measured varying strestec

in which a large part consists of high harmonics to tre number of
revolutions of the rotor lying usually in the range of the Lth tn thre
6éth. Therefore, the method of determination of induced speeds must
include one more very importan® reauirement, 7This methed shoul4d
determine the ficld of inducea :speeids at least correct to <ie Ft-
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harmonic, which is possible only in the case when the values of
circulation are determined with correct <o the same harmonic.
Consequently, all methods not satisfying this requirement drop out
and cannot be used in the calculation >f elastic oscillations.

It was already stated above that here there will be discussed
the method of calculation of stresses, in which all variables are
expanded in Fourier series with respect to the harmonics. Therefore,
it appears convenient to use the method of determination of the field
of induced speeds in which these speeds are determined also in the
rorm of expansion with respect to the harmonics.

These requirements are satisfisd in the very best manner by the
V. E. Baskin theory (31 (see also § 5, Chapter II, Book One). There-
fore, this theory will be used in this paragraph during the calculation
of stresses.

4, Calculation Formulas for Determining
the Field of Induced Speeds
Let us consider the system of formulas proposed by V. E. Baskin
for calculation of the field of induced speeds in the plane of
rotation of the rotor.

Let us represent the field of these speeds in the form c¢f the cum
ot its harmonic components. Here both the total flow rates and
harmonic components of this speed are attributed to the peripheral
speed of rotation of blade tips of the rotor aR.

Ampig e, +igt S cosap i, sinn). (2.2)

lirre A is the total flow rate throuzh the rotor referred to mR; § —
~onstant. part of induced speed also referred to mR. § and } -
harmonic components of induced speed; ¥ - azimuthal angle of the tlede
counted off from Lie axis colnciding in directicn with the tail heum
of a single-rotor hcelincopter; ’

v-—"-i'_—}'-"-.
wrere V is the zpeed of flight of the nerlicopter; e — argle =f
attack of tne rctsr in axes of thne shaft.
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The linear aerodynamic load which affects the blade will be
presented in the form

T GrRP, ~(8.3)

where c; is the angle of inclination of the dependerce ¢,=mf(a), which
here 1s taken linear in the form of (8.1); p — air density; &, —
value of chord of the blade on the relative radius r = 0.7,

The value P entering into this expression will subsequently be
called the relative aerodynamic load.

Let us represent value P in the form:
P=Py+ 3 (Pacos my+ P siamr). (8.4)

The harmonic components of speed 2, are in the form of the sum
of the so-called partial induced speeds, each of wnich is induced
only by one harmonic of the aerodynamic load:

i-_g L
x.-%‘.r

In these expressions the complete total components of induced
speeds have one subscript n and the partial — two indices n and m,

(8.5)

Values of partial harmonic components of induced speeds are
determined according to the fellowing expressions:

~ for am=sQG

Ram — 3o A (= WI (P
- for a#G&

fnm = A [ (= NI (P
Ream = - oA [t = (= NI (P).

(5.€)

If power In which 1 is raised is negative (a~m<0), then in
rformulas (4.6) onr should assume tiat t=%=(—g)o=s

e et 5 i s, Mo A e e e 5
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caleulation of inteecrals (9.9).
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Coefficients entering into formulas (8.6) have the following
values:

1 . *
T
'_Vﬂtl% = deey! . (8.7)
.-—'ﬂ ’

aR

where o is the rotor solidity and 2, is the number of blades in the
rotor.

The value of flow rate A, average along the radius of the bdblade
is determined from the formula

No=prige,+2 ; ipdr. (£.3)

To determine the functions J(P,) and XP.) entering into equations

(1.6) from the theory of V. E. Baskin there follows the following
formulas:

JPI=]1ite [ ;ﬁ,@,_@;] e« |
‘(’-)-31.(6): [ }'ﬁ,(,’,j_(m] ds, ‘ (5.9)

wrere J, (ar) and J_(sr) are Bessel functions of the first kind with the
order n ana m, respectively; z — parameter of integration,

Here {n order to define more accurately according to what parameter
integration is produced, a new designation for the relative radius of

the blade p is introduced. This designation will be used only in the

‘.. Transformations of Calcylation
Fermulas into Particular Cases

In particular cases expressions (3.6) are considerably simplified.
fo in the case wieen i = m = 0O

R a2 (.10}

!
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For subsequent computations the result obtained for the case
when n = m i8 especially important. It appesrs that the coinciding
harmonics of the aerodynamic load and induced speed are uniquely
connscted by expressions:.

7--3.-’,4:
- 8.11)
L-‘l',f'- (
‘where
&= - A H(— 1
(8.12)

==L ash (1 —(~1y)

Such a form of expressions makes separation of the components of
induced speeds into two types expedient. These include basic
components of induced speed induced by the same harmonic of aerodynamic
load as the harmonic of induced speed and side components, induced by
all remaining harmonics of the aerodynamic load.

This separation permits recording expressions (8.5) in the form
TenleyT

-3 2.13)
Le=e 2+l

where basic components of the induced speed are defined by expressions

(3.11), and the sum of all side components the induced speeds are

introduced into equations with the help of new designations 1; and

%
LT Ry R

-4 ey, I R0
::_..2. L'f‘ 2 L
== ] ae ot}

Here & 1s the number of harmonic compcnents «f indured speeds
considered in the calculation.

At n = 0 the rirst terms of ‘nese eoxpressicn. should te assumed

[
(¥ N
(.8}
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equal to zero, and at n=z, the same should be done with the second
terms, In the formulation of equations for calculation of stresses
the induced speeds will be represented in the form of (8.13).

6. Numerical Determination of Values
of Integrals J(p,) and J(K)

When m ¥ n, calculation of integrals (8.9) is associated with
well-known difficulties., To determine velues of these integrals V, E.
Baskin proposed a metnod in which components of the aerodynamic load
are appruximated with the help of trigonometric polynomials. For
this it is necessary to determine values of P, on radii of the blade
assign2d beforehand not coinciding wit: those which are used in the
whole calculation. In reference to the method expounded here this is
not very convenient, Therefore, here there will be used another
method more suitable for the given case in which calculation of
integrals J(P.) and J().) is produced approximately according to the
same form in which integrals during calculation of stresses in the
blade are calculated. For this the blade is divided into separate
sections within limits of which the aerodynamic load is represented
in the form useful for integration. It is natural to divide the blade
into the same sections in all cases both with calculation of stresses
and with calculation of integrals (%.9). Let us present the load

PaiQ) in suchia way that on each section of integration it changes
according to ithe law

P Ja)= ’;:', " (8.15)

Here p 1s the current value of the relative radius of the blade;
after fulfillment of integration and substitution of limits the valuec
i- wiil not be encountcred in the formulas without an index, @ — the
rame value of relative radius but with index k denotes that the |
examined radius ccincides with the radius for which the relative
acrodynamic load Pa () i ctlculated.

Supseduently. as was already stated, we wili distinguish the

rclative rsdii g on which there is taken the value of the aercdynamic

load from relative radii 7, for which the induced speed 13 calculated,
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This permits avoiding possible confusion.

We will consider that the rela.ive aerodynamic load is changed

according to the law (8.15) for the extent of each section limited by
relative radii o

| i--%ﬁn-x-ﬁ.) énd 6--;-@.4-3&“)-

On Fig. 1.31 the solid step line shows the form of distribution
of relative aerodynamic load along the length of the blade in which it
is represented for calculation of induced speeds by expression (“.1%)
in the case m = 0, Su'n a form of presentation of aerodynamic load
can, of course, introduce certain errors into values of induced speeds.
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Fig. 1.31. Form of relative aero-
dynamic load accepted for calculation
of induced speeds.

However, calculations made for cstimsting the magnitude of this error
showed thut it 18 small and carnot introduce consliderable changes intc
rerults of the calculation,

T we substitute the value -7 rejative acrodynamic load expresae.
in form (*.1%) into tre expression «F ‘te integrand of equation (. 7)),
tien the internal integral in tre rignt-nand side of this eguatinn
can be represented in ne form 47 a rertaln cur af gefliriee frtesral o
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The definite integrals entering in this expression can be
calculated analytically [see 11]. Substituting into the obtained
expressions limits of integration, it is possible to write

'] - i !. ) .
Sp.ﬁ)l.(zim-zﬂn-} ,.,(- = ’)' (8.17)
® . ] .
where
-i!+§.’l P, D) _’ ( ].
A 2 [ ia )

Substituting the thus expressed value of the internal integral
into equations (8.9), we will obtain

- 1
IPI= J.(i):UP.ﬁ)J.(ai)di] drem

. <. (8.18)
-zAl S"-(’J"’-ﬂ (" ﬁ_;ﬁl)a.
)
Or 1f we were to record in simpler form
JP)=3 Apr). (%.19)
where ’

..(;&)‘Sl.(‘;l)JQOI("Lm’. = )a (%.20)

()

Integral (%.20) is treaking integral bearing trhe name of the
integral Weber and Shafkheytlin {11]. Its analytic expression
‘vpending upon the relstionship between T, and Ya(tatgaes) hae the
ifollowing form:

If 3@3&-)<7 ther

- . :.—‘ (B- +g!. Yt [mt240
ai)={ /@) (s L0 ar e lx
L]

?,“'r(.«pn.r(‘-'—;-ﬂ
x,[-o»:-n . n+:-—n . mt: (!.L‘.;":z.:.l)']
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If 7 (@ Q4 >r,» tren

‘n(’:)~ SJ (zr,)lm“( .Q__ n:)

it

Ar(=tt)
== (a'__iz‘gm)” l)r( m+2—u)
XF [R5 150 as (], (8.22)

Here I' is the gamma function with different arguments, and F is the
hypergeometric functior of arguments a, B, v, and z.

These arguments, as can be seen from expressions (8.21) and (5.22),
can have various values depending on the relationship between ?i and
1 (@+ew). Thus, for example, in expression (8,21)

u=e_1+2.__+i.;

2
_®m4+2—n
p"‘ 2 1]
v=m+2;
z_‘(-g-p +§t+l).
4
With calculation on electronic digital computers these functions
are easily programmed. Therefore, their caliculation presents no

difficulties.

7. Assumptions Accepted in the Determination
of Aerodynamic Forces

I'n Lhe delerminaiion of anrcdynamic loads, besides the assumptiorns
(5.1) Lhere are used the same ascsumptions which were used in the
determinatlon of loads on a rigid blade {§ 7, No. €) with the exception

of assumption (7.34).

1. We will consider that the inflow angle to blade prefile ¢
is small, and that therefore it is possible approximately to assum~:

Ocarctgg—'—zg'-. (8.23)
L 4
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where ¢ is the inflow angle; Ux and Uy are mutually perpendicular
components of relative flow rate lying in the plane normal to the
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